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ABSTRAKT 

Tato bakalářská práce se zabývá problematikou postkvantové kryptografie v souvislosti 

s rozvojem kvantových počítačů a rostoucí potřebou zabezpečení digitální komunikace. 

Práce shrnuje aktuální stav, principy a standardizační snahy v oblasti kvantově odolných 

algoritmů dle doporučení organizací NIST a NÚKIB. Hlavní část je zaměřena na hybridní 

algoritmus X25519MLKEM768, jeho implementaci a testování v prostředí Python. 

Výsledky jsou porovnávány s dalšími přístupy z hlediska výkonnosti, bezpečnosti i datové 

režie. Práce poskytuje ucelený pohled na možnosti nasazení moderních kryptografických 

algoritmů a poukazuje na klíčové výhody i limity jejich využití v praxi. 

 

Klíčová slova: postkvantová kryptografie, kvantově odolné algoritmy, X25519MLKEM768, 

NIST, NÚKIB, hybridní šifrování 

 

ABSTRACT 

This bachelor thesis focuses on post-quantum cryptography in connection with the 

development of quantum computers and the growing need for secure digital communication. 

The thesis summarizes the current state, principles, and standardization efforts related to 

quantum-resistant algorithms according to NIST and NÚKIB recommendations. The main 

part is devoted to the hybrid algorithm X25519MLKEM768, its implementation and testing 

in a Python environment. The results are compared with other approaches in terms of 

performance, security, and data overhead. The thesis provides a comprehensive overview of 

the deployment possibilities of modern cryptographic algorithms and highlights the main 

advantages and limitations of their practical use. 

 

Keywords: post-quantum cryptography, quantum-resistant algorithms, 

X25519MLKEM768, NIST, NÚKIB, hybrid encryption 
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ÚVOD 

S rozvojem kvantových počítačů čelí současné kryptografické systémy zásadní hrozbě. 

Kvantové počítače mají potenciál prolomit algoritmy, které jsou dnes považovány za 

bezpečné, a tím zásadně ovlivnit digitální bezpečnost napříč všemi obory. Výběr tohoto 

tématu byl motivován rostoucí aktuálností problematiky a potřebou reagovat na rychlý vývoj 

v oblasti postkvantové kryptografie. 

V současnosti probíhá intenzivní výzkum i standardizace nových kryptografických 

algoritmů, zejména v rámci organizace NIST, a doporučení k jejich nasazení vydávají 

i národní autority jako NÚKIB. Přestože jsou některé nové algoritmy již doporučovány, 

otázka jejich efektivity, praktického nasazení a možných kompromisů zůstává stále 

otevřená. 

Cílem této práce bylo analyzovat aktuální stav v oblasti postkvantové kryptografie, 

implementovat a otestovat hybridní algoritmus X25519MLKEM768 a posoudit jeho výhody 

a nevýhody v porovnání s dalšími přístupy. Pracovní hypotéza vycházela z předpokladu, že 

hybridní postkvantové algoritmy přinášejí zvýšenou výpočetní i datovou náročnost, což 

může mít zásadní dopad na jejich praktické nasazení. 

Přínosem této práce je detailní srovnání teoretických možností a praktických výsledků 

při implementaci moderních kvantově odolných algoritmů, což může pomoci odborné 

komunitě i praxi lépe se zorientovat v problematice a zvolit vhodné řešení při přechodu na 

postkvantovou kryptografii.  
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  TEORETICKÁ ČÁST 
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1 POSTKVANTOVÁ KRYPTOGRAFIE 

Experti odhadují, že kvantové počítače schopné prolomit současné asymetrické 

kryptografické systémy, jako je Rivest–Shamir–Adleman (RSA), mohou být dostupné 

během příštích 10 až 20 let. Tento časový rámec závisí na rychlosti technologického pokroku 

a investicích do vývoje kvantových počítačů. Ačkoli přímé prolomení šifrovacích algoritmů 

zatím nepředstavuje bezprostřední hrozbu, nebezpečí spočívá v současném sběru 

šifrovaných dat. Tato data mohou být v budoucnu zpětně dešifrována pomocí kvantových 

počítačů, což má zásadní dopad na ochranu citlivých informací, které mají dlouhou dobu 

životnosti, například v oblasti zdravotnictví, financí nebo státní bezpečnosti[1] 

Postkvantová kryptografie (PQC) se zaměřuje na vývoj kryptografických algoritmů, 

které zajišťují ochranu dat i v prostředí kvantových počítačů. Tyto algoritmy využívají 

matematické problémy, které jsou považovány za obtížně řešitelné i s využitím kvantových 

výpočetních technologií. Význam PQC spočívá nejen v ochraně současných systémů, 

ale i v jejich přípravě na budoucí výzvy spojené s masivním rozšířením kvantových 

počítačů. 

1.1 Hrozba kvantových počítačů 

Moderní kryptografie je založena na matematických problémech, které jsou pro klasické 

počítače považovány za neřešitelné v rozumném čase. Například algoritmus RSA využívá 

obtížnosti faktorizace velkých čísel, zatímco algoritmy Diffie-Hellman a kryptografie 

eliptických křivek (ECC) staví na složitosti nalezení diskrétního logaritmu. U symetrických 

šifer, jako je například Advanced Encryption Standard (AES), je bezpečnost založena na 

nemožnosti efektivního prohledání všech možných klíčů. Vývoj kvantových počítačů však 

tuto rovnováhu zásadně narušuje. Kvantové algoritmy, jako jsou Shorův a Groverův, 

umožňují efektivně řešit úlohy, na nichž stojí bezpečnost těchto systémů, a tím výrazně 

ohrožují jejich odolnost vůči útokům.[2] 

1.1.1 Shorův algoritmus 

Shorův algoritmus, představený autorem Peterem Shorem v roce 1994, je kvantový 

algoritmus, který efektivně řeší dva klíčové matematické problémy: faktorizaci velkých čísel 

a nalezení diskrétního logaritmu. Shorův algoritmus využívá schopnosti kvantových 

počítačů, jako je superpozice a kvantová Fourierova transformace, k dosažení výsledků, 

které jsou pro klasické algoritmy výpočetně neřešitelné. 
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Princip Shorova algoritmu spočívá ve dvou hlavních krocích. Nejprve je problém 

převeden na zjištění periodicity specifické funkce, což je úkol zvládnutelný pomocí 

kvantových výpočtů. Poté je pomocí kvantové Fourierovy transformace určena perioda, 

která vede k efektivní faktorizaci čísla nebo nalezení diskrétního logaritmu.[3] 

1.1.2 Groverův algoritmus 

Groverův algoritmus, navržený Lovem K. Groverem v roce 1996, přináší kvadratické 

zrychlení při vyhledávání v nestrukturovaných databázích. Oproti klasickým algoritmům, 

které vyžadují v průměru N/2 pokusů pro N položek, zvládne Groverův algoritmus najít 

hledaný prvek za přibližně √N iterací. Algoritmus opakovaně zesiluje pravděpodobnost 

správného řešení pomocí orákula a amplifikační operace.[4] 

Hlavní dopad na kryptografii je u symetrických šifer, jako je AES – efektivní délka 

klíče je kvůli Groverovu algoritmu snížena na polovinu (např. 128bitový klíč má efektivní 

bezpečnost pouze 64 bitů), což vede k doporučení používat dvojnásobnou délku klíče. 

Groverův algoritmus může mít vliv i na složitější problémy jako je Shortest Vector Problem 

(SVP) v oblasti postkvantové kryptografie, kde může být využit v hybridních 

kvantově-klasických útocích na některé mřížkové systémy.[5] 

1.2 Přístupy postkvantové kryptografie 

Postkvantová kryptografie se snaží zajistit bezpečnost šifrovacích systémů i v době, kdy 

budou dostupné výkonné kvantové počítače. Na rozdíl od současné kryptografie jsou nové 

algoritmy navrhovány tak, aby jejich bezpečnost byla založena na matematických 

problémech, pro které zatím nejsou známy efektivní kvantové algoritmy. 

V této kapitole budou popsány a vzájemně srovnány přístupy, které jsou v současnosti 

považovány za kvantově odolné, pro něž neexistují známé efektivní kvantové útoky. 

Zároveň budou zmíněny i přístupy, které byly v minulosti dlouho považovány za bezpečné, 

ale s rozvojem kvantových algoritmů byly prolomeny a dnes se již nedoporučují pro 

praktické nasazení. 

1.2.1 Kryptografie založená na mřížkách 

Kryptografie založená na mřížkách představuje jeden z hlavních směrů postkvantové 

kryptografie. Tento přístup staví na pravidelných geometrických strukturách, nazývaných 
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mřížky – množinách bodů v n-rozměrném prostoru, které vznikají jako lineární kombinace 

několika bázových vektorů s celočíselnými koeficienty. [6] 

 

Obrázek 1 Dvourozměrná mřížka a dvě možné báze 

(zdroj: [6]) 

Matematickým základem jsou obtížné výpočetní problémy, jako je SVP a Closest 

Vector Problem (CVP). Ty spočívají v hledání nejkratšího nenulového vektoru v mřížce, 

respektive nejbližšího bodu k danému vektoru mimo mřížku. Vysoká výpočetní složitost 

těchto problémů, zejména ve vyšších dimenzích, zajišťuje jejich odolnost vůči jak 

klasickým, tak kvantovým počítačům.[7] 

Na těchto problémech jsou založeny moderní kryptografické konstrukce, jako jsou 

Learning With Errors (LWE) a jeho rozšíření Ring-Learning With Errors (RLWE). 

V případě LWE se do výpočtů přidává šum, což znesnadňuje zpětné odvození původních 

dat. RLWE tuto myšlenku rozšiřuje do algebraických struktur kruhů (např. polynomiálních 

okruhů), čímž umožňuje efektivnější výpočty a menší velikosti klíčů při zachování stejné 

úrovně bezpečnosti.[8] 

Mřížková kryptografie nachází široké uplatnění v moderních šifrovacích algoritmech 

navržených jako odolné vůči kvantovým útokům. Mezi klíčové příklady patří algoritmus 

Kyber, určený pro výměnu klíčů, a Dilithium, algoritmus pro digitální podpisy. Oba tyto 

algoritmy, byly v roce 2024 standardizovány jako federální standardy pro zpracování 

informací (FIPS) 203 a 204.[9; 10] 
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1.2.2 Kryptografie založená na teorii kódování 

Kryptografie založená na kódech využívá principy z oblasti kódování s chybovou korekcí. 

Základní myšlenkou je zakódovat zprávu pomocí určitého kódu a poté ji úmyslně „narušit“ 

přidáním chyb. Dekódování je možné pouze se znalostí tajného kódu, který umožňuje chyby 

odstranit. Bez této znalosti je zpětné dekódování výpočetně velmi náročné, a to i s pomocí 

kvantového počítače. 

Nejznámějším zástupcem kódové kryptografie je McElieceův kryptosystém, navržený 

již v roce 1978. Využívá tzv. Goppovy kódy, které umožňují efektivní opravu chyb, ale 

z pohledu útočníka působí jako náhodné matice. Zpráva se zašifruje pomocí veřejného klíče 

ve formě generující matice a přidáním náhodného vektoru chyb. Dešifrování je možné pouze 

se znalostí tajného dekódovacího algoritmu. Bez něj je nalezení původní zprávy výpočetně 

neproveditelné. Princip fungování McElieceova je znázorněn na Obrázku 2. Existuje 

i Niederreiterova varianta, která je s původním systémem ekvivalentní, liší se však 

způsobem zakódování zprávy.[6] 

V rámci standardizačního procesu Národního institutu pro standardy a technologie 

(NIST) byl McElieceův kryptosystém zařazen mezi finalisty v kategorii mechanismů pro 

výměnu klíčů (KEM – Key Encapsulation Mechanism). I přes svou vysokou odolnost vůči 

kvantovým útokům nebyl nakonec doporučen ke standardizaci, a to především kvůli velké 

velikosti veřejného klíče, která omezuje jeho praktické nasazení. 

 

Obrázek 2 Schéma McElieceova kryptosystému 

(zdroj: [11]) 
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Ve čtvrtém kole tohoto procesu byly ponechány čtyři alternativní kandidáty, z nichž tři 

vycházejí z kódové kryptografie. Jedná se o algoritmy Classic McEliece, Bit Flipping Key 

Encapsulation (BIKE) a Hamming Quasi-Cyclic (HQC). Tyto algoritmy zůstávají jako 

záložní řešení pro případ, že by u hlavních finalistů došlo v budoucnu k objevení 

bezpečnostních slabin.[12] 

1.2.3 Kryptografie založená na hashovacích funkcích 

Hashovací kryptografie představuje jednoduchý a robustní přístup k postkvantové 

kryptografii. Využívá výhradně vlastností kryptografických hashovacích funkcí, jako je 

odolnost vůči kolizím a jednoznačnost výstupu. Bezpečnost těchto systémů nezávisí na 

složitých algebraických problémech, ale pouze na existenci jednosměrné funkce, což je 

považováno za jeden z nejzákladnějších kryptografických předpokladů.[6] 

Hashovací schémata se dělí na stavová a bezstavová. Stavová, jako je Merkleho 

podpisový systém, využívají hashovací stromy, kde každý podpis odpovídá jedinečné větvi, 

a proto vyžadují sledování stavu, aby nedošlo k opětovnému použití podpisového klíče – to 

sice zajišťuje efektivitu, ale zároveň zvyšuje riziko chyb při správě klíčů. Naproti tomu 

bezstavová schémata, jako Stateless Practical Hash-based Incredibly Nice Cryptographic 

Signature Plus (SPHINCS+), tento problém odstraňují tím, že nevyžadují uchovávání stavu, 

což usnadňuje nasazení v praxi, avšak za cenu větší výpočetní náročnosti a rozměrnějších 

podpisů.[13] 

 

Obrázek 3 Merkeleho strom s výškou 3 

(zdroj: [6]) 
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Na obrázku (Obrázek 3) lze vidět schéma Merkleho strom s výškou 3. Spodní uzly ν₀ 

představují listy stromu odpovídající jednorázovým podpisovým klíčům. Pod každým listem 

je znázorněna dvojice Xᵢ, Yᵢ, kde Xᵢ je jednorázový tajný klíč a Yᵢ odpovídající veřejný klíč, 

který bývá typicky vytvořen jako hash hodnoty Xᵢ. Každý vnitřní uzel vzniká hashováním 

svých dvou potomků, přičemž kořen stromu ν₃ slouží jako veřejný klíč celého schématu. Při 

ověřování podpisu se využívá tzv. autentizační cesta od konkrétního listu až ke kořeni, což 

umožňuje efektivní ověření bez nutnosti znalosti celého stromu.[13] 

Bezstavový algoritmus SPHINCS+, který staví výhradně na hashovacích funkcích, byl 

v roce 2024 oficiálně standardizován pod označením FIPS 205, čímž se stal prvním 

schváleným postkvantovým podpisovým algoritmem nezávislým na algebraických 

strukturách.[14] 

1.2.4 Prolomené přístupy 

I když se některé přístupy k postkvantové kryptografii původně jevily jako slibné a byly 

zařazeny do standardizačních procesů, pozdější analýzy a praktické útoky odhalily jejich 

zásadní zranitelnosti. Mezi nejvýznamnější příklady patří kryptografie založená na 

isogeniích nad supersingulárními eliptickými křivkami a multivariační kryptografie. 

Kryptografie založená na isogeniích využívá obtížnosti nalezení isogenie mezi 

dvěma supersingulárními eliptickými křivkami. Tato metoda byla zpočátku považována za 

slibnou postkvantovou alternativu, protože problémy spojené s isogeniemi nejsou přímo 

řešitelné pomocí kvantových algoritmů jako Shorův algoritmus. [15]  

Nejznámějšími zástupci této kategorie byly protokoly Supersingular Isogeny Diffie-

Hellman (SIDH) a jeho rozšíření Supersingular Isogeny Key Encapsulation (SIKE), který 

kromě základní výměny klíčů implementuje také mechanismus KEM, čímž rozšiřuje 

možnosti praktického nasazení. SIKE byl zařazen jako alternativní kandidát do třetího kola 

soutěže NIST PQC. Oba protokoly nabízely malé velikosti klíčů, ale jejich výpočetní 

náročnost byla vysoká. [16] 

V srpnu 2022 však Castryck a Decru publikovali útok, který umožnil efektivní získání 

soukromého klíče, čímž byla bezpečnost SIDH a následně i SIKE zcela narušena. 

Následkem toho byl SIKE vyřazen ze standardizačního procesu NIST a přestal být nadále 

považován za bezpečný postkvantový kandidát. [17] 
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Druhým již prolomeným přístupem je multivariační kryptografie (MPKC) založena na 

obtížnosti řešení systémů multivariabilních kvadratických rovnic nad konečnými tělesy. Její 

bezpečnost byla dlouho považována za velmi slibnou, protože řešení těchto rovnic je 

nedeterministicky polynomiálně těžký (NP) problém, vůči kterému jsou kvantové algoritmy, 

jako je Shorův, neúčinné. [7] 

Jedním z nejznámějších zástupců tohoto přístupu byl algoritmus Rainbow, který byl 

finalistou třetího kola soutěže NIST PQC. Využíval rozšíření schématu Oil-Vinegar 

a sliboval vysokou efektivitu při podepisování a ověřování.[12] 

Nicméně v roce 2022 byl Rainbow prakticky prolomen – útok umožnil efektivní 

rekonstruování soukromého klíče na běžném hardwaru. Tato událost zásadně otřásla 

důvěrou v MPKC a vedla k vyřazení Rainbow ze standardizačního procesu. Od té doby nebyl 

žádný multivariační algoritmus zařazen mezi finální NIST standardy.[18] 

1.2.5 Porovnání jednotlivých přístupů 

Postkvantové kryptografické algoritmy se liší v několika klíčových aspektech, jako je 

výpočetní náročnost, velikost klíčů, bezpečnostní status a praktická použitelnost. Tyto 

faktory jsou rozhodující při výběru algoritmů pro reálné nasazení a jejich efektivitu 

v různých prostředích. 

Mřížková kryptografie patří mezi nejperspektivnější oblasti postkvantové kryptografie. 

Mezi její hlavní výhody patří vysoká efektivita operací, relativně malé velikosti klíčů 

a flexibilita nasazení v různých prostředích. Díky těmto vlastnostem jsou dva ze tří dosud 

standardizovaných algoritmů v rámci NIST PQC založené právě na této technologii. Hlavní 

nevýhodou může být větší velikost šifrovaného textu ve srovnání s klasickými algoritmy, 

která je však v praxi stále dobře zvládnutelná. 

Kryptografie založená na kódech, představuje jeden z nejdéle známých a zároveň 

nejrobustnějších přístupů postkvantové kryptografie. Mezi hlavní výhody patří vysoká 

odolnost vůči známým typům útoků a stabilní teoretický základ. Hlavní nevýhodou této 

technologie je však velká velikost veřejného klíče, což výrazně komplikuje nasazení 

v prostředích s omezenou pamětí nebo šířkou pásma. Přesto zůstává kódová kryptografie 

vhodná zejména pro scénáře, kde velikost klíče není zásadní překážkou. 

Kryptografie založená na hashovacích funkcích nabízí jednoduchý a konzervativní 

přístup k postkvantové bezpečnosti. Její hlavní výhodou je nezávislost na algebraických 
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strukturách, což zajišťuje robustnost vůči široké škále útoků, včetně těch kvantových. 

Nevýhodou jsou však větší velikosti podpisů a vyšší výpočetní náročnost ve srovnání 

s jinými přístupy, což může být limitující v prostředích s omezenými zdroji. 

Isogenní kryptografie byla po dlouhou dobu považována za perspektivní přístup, a to 

především díky velmi malé velikosti klíčů. V roce 2022 však došlo k jejímu prolomení 

prostřednictvím efektivního útoku, který umožnil zrekonstruovat soukromý klíč. Následkem 

toho byla vyřazena z procesu standardizace NIST PQC a její další použití již není 

doporučováno. 

Multivariační kryptografie, nabízela vysokou rychlost operací a nízkou výpočetní 

náročnost, což z ní činilo atraktivního kandidáta pro nasazení v reálném světě. V roce 2022 

však byl algoritmus Rainbow prolomen praktickým útokem. Tento průlom zásadně narušil 

důvěru v multivariační přístupy, které již nejsou považovány za bezpečné a byly vyřazeny 

ze standardizačního procesu NIST PQC. [19; 20] 

Tabulka 1 Porovnání postkvantových přístupů 

Typ Výhody Nevýhod 

 

Bezpečnostní status 

Mřížky Rychlost operací Obtížné nastavení 

parametrů 

Bezpečné 

Kódy Malá velikost 

podpisů, rychlé 

operace 

Velká velikost klíčů Bezpečné 

Hashe Prokázán důkaz 

bezpečnosti 

Velká velikost 

podpisů 

Bezpečné 

Isogenní Malá velikost klíčů Pomalejší rychlost 

operací 

Prolomeno 

Multivariační Rychlost operací Velká velikost klíčů Prolomeno 

(zdroj: [7]) 
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2 STANDARDIZAČNÍ PROCES NIST PQC 

NIST zahájil proces standardizace post-kvantové kryptografie jako reakci na hrozbu, kterou 

představují kvantové počítače pro současné kryptografické systémy. Tento proces staví na 

dosavadních úspěšných standardizačních projektech, jako byly výběry algoritmů AES 

a Secure Hash Algorithm 3 (SHA-3), a klade důraz na transparentnost a zapojení odborné 

komunity. 

První významný krok NIST zahrnoval vytvoření hodnotících kritérií, která reflektují 

požadavky na bezpečnost, výkon a implementační vlastnosti algoritmů. Tato kritéria byla 

zveřejněna k veřejné konzultaci v roce 2016 a následně finalizována. Na základě těchto 

kritérií byla v roce 2017 vyhlášena výzva k předkládání návrhů algoritmů pro šifrování, 

digitální podpisy a výměnu klíčů. Cílem NIST je vybrat algoritmy, které budou schopny 

odolat kvantovým i klasickým útokům, přičemž proces výběru je nastaven tak, aby zajistil 

dostatečný prostor pro odborné hodnocení a zpětnou vazbu. 

NIST zdůrazňuje, že tento proces není koncipován jako soutěž, ale jako otevřená 

platforma, která má vést ke konsensu o nejvhodnějších standardech. Návrhy jsou hodnoceny 

na základě jejich odolnosti vůči různým typům útoků, jejich výkonnosti a také flexibility 

implementace na široké škále zařízení a platforem. Po přijetí návrhů byla stanovena tří až 

pětiletá lhůta pro veřejné hodnocení, během níž budou návrhy analyzovány a testovány. 

Tento přístup má zajistit, že standardizované algoritmy budou odpovídat nejen současným, 

ale i budoucím potřebám. 

Proces zahrnuje také důraz na tzv. "crypto agility", tedy schopnost rychle a efektivně 

přejít na nové standardy bez zásadních narušení stávajících systémů. To je zvláště důležité 

v kontextu kvantových počítačů, jejichž plný potenciál by mohl být realizován během 

příštích 10 až 20 let. 

Jedním z klíčových cílů NIST je zajistit, aby nové standardy byly přijaty nejen na 

národní, ale i na globální úrovni. Proto NIST aktivně spolupracuje s odborníky z akademické 

sféry, průmyslu a dalších standardizačních organizací. Transparentnost celého procesu má 

zajistit důvěru v nové standardy a jejich hladkou implementaci do současné 

infrastruktury.[21] 
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2.1 První kolo standardizačního procesu 

První kolo standardizačního procesu NIST PQC [22], které probíhalo od prosince 2017 do 

ledna 2019, představovalo klíčovou fázi v identifikaci algoritmů odolných vůči kvantovým 

útokům. Tento proces umožnil identifikovat slibné návrhy a zároveň poukázat na slabiny 

některých algoritmů. Výsledkem byla užší skupina kandidátů, kteří postoupili do druhého 

kola, a zajistilo se, že vybrané algoritmy splňují nejen technická kritéria, ale také očekávání 

odborné kryptografické komunity. 

Do procesu bylo přihlášeno 82 návrhů algoritmů, z nichž 69 splnilo minimální 

požadavky na přijetí a bylo zařazeno mezi kandidáty prvního kola. Tyto návrhy zahrnovaly 

20 schémat pro digitální podpisy a 49 algoritmů pro šifrování veřejného klíče nebo výměnu 

klíčů. Mezi základní podmínky přijetí patřilo poskytnutí referenční implementace v jazyce 

C, testovacích případů a písemné specifikace. Algoritmy musely být rovněž 

implementovatelné na široké škále hardwarových a softwarových platforem. 

2.1.1 Hodnotící kritéria 

Hodnocení kandidátů v prvním kole standardizačního procesu NIST PQC se řídilo třemi 

hlavními kritérii: bezpečností, výkonem a náklady a charakteristikami algoritmů. 

Bezpečnost – Bezpečnost byla nejdůležitějším kritériem. Algoritmy musely poskytovat 

ochranu proti kvantovým i klasickým útokům a splňovat požadavky na odolnost vůči 

adaptivním útokům na šifrované texty (IND-CCA2 – indistinguishability under chosen 

ciphertext attack) a podpisy (EUF-CMA – existential unforgeability under chosen message 

attack). Hodnoceny byly také odolnost vůči útokům postranními kanály a dopředná 

bezpečnost. NIST definoval pět kategorií bezpečnosti, aby mohl porovnat odolnost 

kandidátů. 

Výkon a náklady – Důraz byl kladen na efektivitu algoritmů, včetně velikosti klíčů, 

šifrovaných textů a podpisů, výpočetní náročnosti a paměťových požadavků. Algoritmy 

musely být implementovatelné na široké škále hardwarových a softwarových platforem, 

přičemž NIST prováděl předběžné testy na referenční platformě. 

Charakteristiky algoritmů – Upřednostňovány byly algoritmy s jednoduchým 

a flexibilním designem, které podporují široké nasazení a snadnou analýzu bezpečnosti. 

Hodnoceny byly také jejich licenční podmínky a dostupnost implementací. 
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2.1.2 Výsledky prvního kola 

Na základě hodnocení podle kritérií definovaných v předešlé kapitole bylo z 69 kandidátů 

prvního kola vybráno 26 algoritmů, které postoupily do druhého kola. Z těchto 26 algoritmů 

bylo 17 určeno pro šifrování veřejného klíče a výměnu klíčů a 9 pro digitální podpisy. 

Tabulka 2 Seznam algoritmů vybraných do druhého kola standardizace 

Digitální Podpisy Šifrování a výměna klíčů 

CRYSTALS-DILITHIUM BIKE 

FALCON Classic McEliece 

GeMSS CRYSTALS-KYBER 

LUOV FrodoKEM 

MQDSS HQC 

Picnic LAC 

qTesla LEDAcrypt 

Rainbow NewHope 

SPHINCS+ NTRU 

 NTRU Prime 

 NTS-KEM 

 ROLLO 

 Round5 

 RQC 

 SABER 

 SIKE 

 Three Bears 

(zdroj: [22]) 

2.2 Druhé kolo standardizačního procesu 

V druhém kole procesu [23], které probíhalo od ledna roku 2019 do července 2020, bylo 

vybíráno ze 26 kandidátů na standardizaci. Druhé kolo bylo klíčovou fází, ve které byla 

kandidátská schémata podrobena detailnější analýze bezpečnosti, výkonu 
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a implementačních vlastností. Hlavním cílem bylo identifikovat algoritmy s největším 

potenciálem pro široké nasazení v éře post-kvantové kryptografie. 

Během druhého kola prošly některé algoritmy významnými změnami, které zlepšily 

jejich bezpečnost a výkon. Například u CRYSTALS-KYBER bylo nahrazeno odvození 

klíče SHA3-256 za Secure Hash Algorithm Keccak Extendable-Output Function 256 

(SHAKE256) a odstraněna komprese veřejného klíče, což zvýšilo efektivitu a snížilo riziko 

útoků. Nth Degree Truncated Polynomial Ring Units (NTRU) byl po spojení s dalším 

návrhem optimalizován, aby splňoval požadavky na bezpečnost, a byl rozšířen 

o transformaci Fujisaki-Okamoto. Algoritmus Strongly-Attackable Block Encryption with 

Rounding (SABER) získal pevnější bezpečnostní základ díky úpravám parametrů a lepší 

formální analýze. U FrodoKEM byla přidána vyšší bezpečnostní kategorie, i když jeho 

výkon zůstává nižší ve srovnání s jinými mřížkovými schématy. Multivariantní algoritmy 

jako Rainbow a Great Multivariate Short Signature (GeMSS) byly zjednodušeny a posíleny 

proti novým typům útoků. 

Druhé kolo zahrnovalo také významné kryptoanalytické výsledky, které ukázaly slabiny 

některých návrhů. Například algoritmy Lightweight Authenticated Cipher (LAC), Low 

Error Decoding Algorithm Cryptosystem (LEDAcrypt) a Round5 byly eliminovány kvůli 

novým útokům nebo nejasnostem v jejich konstrukcích.  

Na konci druhého kola bylo vybráno 7 finalistů a 8 alternativních kandidátů pro třetí 

kolo. 

Tabulka 3 Seznam finalistů do třetího kola 

Digitální Podpisy Šifrování a výměna klíčů 

CRYSTALS-DILITHIUM Classic McEliece 

FALCON CRYSTALS-KYBER 

Rainbow NTRU 

 SABER 

(zdroj: [23]) 
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Tabulka 4 Seznam alternativních kandidátů do třetího kola 

Digitální Podpisy Šifrování a výměna klíčů 

GeMSS BIKE 

Picnic FrodoKEM 

SPHINCS+ NTRU Prime 

 HQC 

 SIKE 

(zdroj: [23]) 

2.3 Třetí kolo standardizačního procesu 

Hlavním úkolem ve třetím kole standardizačního procesu [12], které probíhalo od července 

2020 do července 2022, bylo dokončit analýzu finalistů a určit první standardizované 

algoritmy. 

Toto kolo se soustředilo na detailní hodnocení finalistů a alternativních kandidátů 

z druhého kola. Zaměření bylo na bezpečnostní analýzu, zahrnující odolnost vůči nově 

objeveným útokům, a na hodnocení výkonu, které zahrnovalo testování na různých 

platformách. Významnou roli hrála zpětná vazba odborné kryptografické komunity, která 

poskytla nové poznatky a analýzy. 

Na základě výsledků třetího kola byly vybrány první algoritmy, které budou 

standardizovány, a současně byly definovány další kroky, včetně pokračování čtvrtého kola 

pro některé kategorie algoritmů. Tento proces stanovil základní standardy pro post 

kvantovou kryptografii, které budou implementovány do širokého spektra aplikací. 

2.3.1 Hodnotící kritéria 

Ve třetím kole standardizačního procesu NIST PQC byla bezpečnost hlavním kritériem 

hodnocení, protože algoritmy musely prokázat odolnost proti klasickým i kvantovým 

útokům a splnit požadavky na bezpečnost v pěti definovaných kategoriích. Mřížkové 

algoritmy, jako například CRYSTALS-KYBER a CRYSTALS-DILITHIUM, dosáhly 

vynikajících výsledků díky své robustnosti vůči kryptoanalytickým metodám, jako je 

redukce mřížky prostřednictvím algoritmu Block Korkine–Zolotarev (BKZ). Tyto testy 

potvrdily jejich stabilitu parametrů i při aplikaci optimalizovaných útoků. 
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Naopak multivariantní algoritmy, například Rainbow, selhaly při testech zaměřených 

na algebraické redukce, které umožnily efektivní prolomení jejich bezpečnostních základů. 

Podobně algoritmus BIKE čelil problémům s odolností vůči postranním kanálům, zejména 

s chybami při dešifrování, což vedlo ke snížení důvěry v jeho praktickou implementaci. 

Důkladné kryptoanalytické analýzy zahrnovaly také ověřování deklarovaných 

bezpečnostních kategorií, což v některých případech odhalilo, že parametry některých 

návrhů byly nastaveny příliš optimisticky. Tyto nálezy vedly buď k úpravám parametrů, 

nebo k eliminaci algoritmů, které nedokázaly splnit požadované standardy. Výsledky těchto 

testů zásadně ovlivnily výběr finalistů a ukázaly, že robustnost vůči široké škále útoků je 

klíčovým faktorem pro budoucí standardizaci. 

Druhým hlavním kritériem při hodnocení byl výkon a náklady při reálném nasazení 

jednotlivých algoritmů. Posuzovaly se faktory, jako jsou velikost klíčů, šifrovaných textů 

a podpisů, rychlost operací (např. šifrování, dešifrování, generování klíčů) a nároky na 

paměť. Testy byly prováděny na různých platformách, aby se ukázala flexibilita algoritmů 

při různých scénářích použití, od výkonných serverů až po zařízení s velmi omezeným 

výkonem, jako jsou zařízení internetu věcí (IoT). 

První graf (Obrázek 4) zobrazuje výkonovou náročnost několika algoritmů pro 

šifrování a výměnu klíčů na x86-64 procesorech s Advanced Vector Extensions 2 (AVX2) 

rozšířeními. Zobrazené algoritmy, jako jsou KYBER, SABER a varianty NTRU, byly 

hodnoceny na základě výpočetní náročnosti tří hlavních operací: generování klíčů, 

zapouzdření a odpouzdření. 

Z výsledků je zřejmé, že algoritmy rodiny CRYSTALS-KYBER dosahují nejlepších 

výkonů jak v bezpečnostní úrovni 1 (KYBER512), tak v úrovni 3 (KYBER768). Algoritmy 

z rodiny SABER (LightSaber, Saber) si rovněž vedou velmi dobře a ve většině operací se 

přibližují výkonu CRYSTALS-KYBER. Naopak algoritmy NTRU (ntruhps2048677, 

ntruhrss701, ntruhps4096821) dosahují nejpomalejších výsledků, přičemž největší zátěž 

představuje operace generování klíčů, zatímco operace zapouzdření a odpouzdření dosahují 

srovnatelných časů s ostatními algoritmy. 
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Obrázek 4 Graf výkonnostní testy KEM algoritmů na x86-64 procesorech s rozšířeními 

AVX2 

(zdroj: [12]) 

V druhém grafu (Obrázek 5) jsou zobrazeny výkonnostní testy algoritmů pro digitální 

podpisy na x86-64 procesorech s AVX2 rozšířeními. Graf zobrazuje počet hodinových cyklů 

pro klíčové operace vytvoření podpisu a jeho ověření u různých variant algoritmů FALCON 

a CRYSTALS-DILITHIUM.  

Z grafu je patrné, že algoritmy rodiny CRYSTALS-DILITHIUM jsou obecně 

efektivnější z hlediska klíčových operací. Například při porovnání algoritmů na úrovni 

zabezpečení Level 5 vykazuje CRYSTALS-DILITHIUM nižší výpočetní náročnost 

ve srovnání s algoritmem FALCON-1024, což z něj činí rychlejší volbu pro aplikace, kde je 

důležitý výkon. 
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Obrázek 5 Graf výkonnostní testy algoritmů pro digitální podpisy na x86-64 

procesorech s AVX2 rozšířeními 

(zdroj: [12]) 

V testech na pomalejších procesorech, jako je Advanced RISC Machine (ARM) 

Cortex-M4, si z KEM algoritmů vedl nejlépe CRYSTALS-KYBER, který prokázal nízké 

paměťové nároky a rychlé operace i na platformách s omezeným výkonem. Algoritmy 

SABER dosáhl podobně dobrých výsledků a ukázal se jako efektivní alternativa. Naopak 

algoritmus NTRU, jak již bylo možné odhadovat z výsledků na výkonnějších procesorech, 

vykazoval na pomalejších zařízeních výrazně vyšší výpočetní náročnost, zejména při 

generování klíčů, což jej činí méně vhodným pro zařízení s omezenými zdroji. 

U algoritmů pro digitální podpisy si lépe vedly algoritmy rodiny CRYSTALS-

DILITHIUM, především na bezpečnostních úrovních 2 a 3, kde prokázaly dobrou rovnováhu 
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mezi bezpečností a výkonem. Naproti tomu algoritmus FALCON-512, který odpovídá 

bezpečnostní úrovni 1, vyžadoval na pomalejším procesoru více času na vykonání operací, 

zejména při podepisování, což může omezit jeho využití v prostředích s omezeným 

výkonem. 

Třetím klíčovým kritériem hodnocení byly charakteristiky algoritmů a jejich 

implementace, včetně jednoduchosti designu, flexibility nasazení a odolnosti vůči útokům 

postranními kanály. Mezi KEM algoritmy si CRYSTALS-KYBER vedl výborně díky své 

přehledné konstrukci a nízkým nárokům na implementaci, což jej činí vhodným pro širokou 

škálu zařízení. SABER dosáhl obdobně dobrých výsledků, přičemž jeho stabilní výkon 

a nízké paměťové nároky jej činí univerzální volbou. 

U digitálních podpisů vynikl CRYSTALS-DILITHIUM, který díky modulárnímu 

designu a dobré rovnováze mezi výkonem a jednoduchostí implementace získal vysoké 

hodnocení. SPHINCS+ byl vyzdvihován za svou inherentní odolnost vůči útokům 

postranními kanály díky hashovacímu základu. Naopak algoritmus Classic McEliece u KEM 

a FALCON u digitálních podpisů čelily problémům s implementací, zejména kvůli velké 

velikosti klíčů nebo vyšším paměťovým nárokům. 

2.3.2 Výsledky třetího kola 

Ve třetím kole standardizačního procesu byly vybrány celkem čtyři algoritmy 

ke standardizaci. Z algoritmů určených pro šifrování a výměnu klíčů byl vybrán 

CRYSTALS-KYBER, který vynikl svou vysokou bezpečností, vynikajícím výkonem a 

flexibilitou implementace, což jej činí ideální volbou pro široké nasazení. 

Mezi algoritmy pro digitální podpisy byly vybrány tři kandidáty. CRYSTALS-

DILITHIUM byl označen za primární volbu díky vynikající rovnováze mezi bezpečností, 

výkonem a jednoduchostí implementace. FALCON se ukázal jako vhodná volba pro 

aplikace vyžadující menší velikost podpisů, čímž snižuje náklady na přenos dat. Naopak 

SPHINCS+ byl vybrán díky své unikátní odolnosti vůči postranním kanálům, kterou 

zajišťuje jeho hashovací základ, což z něj činí robustní volbu pro specifické aplikace. NIST 

plánuje vydat pro tyto algoritmy drafty. 
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Tabulka 5 Seznam algoritmů určených ke standardizaci 

Digitální Podpisy Šifrování a výměna klíčů 

CRYSTALS-DILITHIUM CRYSTALS-KYBER 

FALCON  

SPHINCS+  

(zdroj: [12]) 

Některé algoritmy byly ve třetím kole z procesu standardizace zcela vyřazeny, protože 

neprokázaly dostatečnou bezpečnost, výkon nebo implementační vlastnosti. Mezi vyřazené 

patří například Rainbow, který byl eliminován kvůli zásadním kryptoanalytickým útokům 

zpochybňujícím jeho bezpečnostní základy, a GeMSS, jenž selhal při analýze odolnosti vůči 

kryptoanalýze. Dále byl vyřazen NTRUEncrypt, jehož výkon a složitost implementace 

neobstály v porovnání s ostatními kandidáty. 

Jiné algoritmy, přestože nebyly přímo vybrány ke standardizaci, postoupily do čtvrtého 

kola pro další hodnocení. Mezi ně patří například BIKE, Classic McEliece, HQC a SIKE, 

které nabízejí různé přístupy, jako jsou kódově založené systémy nebo isogenie. Tyto 

algoritmy budou dále analyzovány, aby bylo možné určit jejich případnou budoucí 

standardizaci. 

Tabulka 6 Seznam kandidátů do čtvrtého 

kola 

Šifrování a výměna klíčů 

BIKE 

Classic McEliece 

SIKE 

HQC 

(zdroj: [12]) 
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3 NIST STANDARDY 

Ve standardizačním procesu postkvantových kryptografických algoritmů, který vedl NIST, 

byly vybrány čtyři algoritmy, které jsou určeny ke standardizaci. Tento proces byl zahájen 

v roce 2016 jako odpověď na rostoucí hrozbu kvantových počítačů, které by mohly prolomit 

současné asymetrické kryptografické systémy. 

V srpnu 2024 NIST zveřejnil první tři finální standardy pro šifrování a výměnu klíčů, 

přičemž čtvrtý algoritmus, určený pro digitální podpisy, stále prochází dokončovací fází 

standardizace. Tyto algoritmy budou tvořit základ budoucích kryptografických systémů, 

které mají zajistit ochranu citlivých dat i v éře kvantových počítačů. 

NIST zároveň důrazně doporučuje organizacím a správcům systémů, aby co nejdříve 

začali implementovat nové standardy a připravili se na postkvantovou éru.[24] 

3.1 FIPS 203 

Standard FIPS 203 definuje Module-Lattice-Based Key-Encapsulation Mechanism (ML-

KEM) [9], který byl vybrán jako postkvantový standard pro bezpečnou výměnu klíčů. ML-

KEM vychází z algoritmu CRYSTALS-KYBER, jednoho z finalistů třetího kola 

standardizačního procesu NIST PQC. Tento mechanismus je navržen tak, aby poskytoval 

odolnost vůči kvantovým útokům, které by mohly prolomit současné asymetrické 

kryptografické systémy. ML-KEM je založen na mřížkové kryptografii, konkrétně na 

problému Module Learning with Errors (MLWE), což je jedna z nejvýznamnějších tříd 

postkvantových kryptografických problémů, u kterých se předpokládá odolnost vůči 

kvantovým algoritmům. 

3.1.1 Varianty 

Standard FIPS 203 definuje tři varianty ML-KEM: ML-KEM-512, ML-KEM-768, ML-

KEM-1024, které se liší úrovní bezpečnosti, velikostí klíčů a šifrovaných textů. Každá 

varianta je navržena tak, aby poskytovala různou rovnováhu mezi bezpečností a výkonem, 

přičemž vyšší číslo v názvu odpovídá vyšší úrovni bezpečnosti. 

Pro všechny varianty jsou společné pouze dvě konstanty, a to konstanta n = 256, která 

udává dimenzionalitu polynomů v mřížkovém prostoru, a konstanta q = 3329, což je 

modulární prvočíslo, které umožňuje rychlé výpočty pomocí Number-Theoretic Transform 

(NTT). 
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Jednotlivé varianty algoritmu ML-KEM se liší hodnotami několika klíčových 

parametrů, které ovlivňují jejich bezpečnostní úroveň, výpočetní náročnost a velikost 

výsledných dat. Parametr k určuje dimenzionalitu matic používaných při generování klíčů 

a šifrování – vyšší hodnota zvyšuje bezpečnost, ale zároveň zvětšuje klíče a šifrovaný text. 

Parametr η₁ určuje rozsah pro výběr náhodných vektorů při generování klíče, zatímco 

η₂ definuje rozsah šumových vektorů používaných během šifrování. Oba parametry 

ovlivňují náhodnost a tím i odolnost proti útokům. Parametry dᵤ a dᵥ slouží k bitové kompresi 

šifrovaného textu – určují, jak velká část výsledku bude při šifrování a dešifrování 

zachována. Vyšší hodnoty těchto parametrů vedou k větší přesnosti a bezpečnosti, ale mohou 

negativně ovlivnit výkon. Přehled konkrétních hodnot pro jednotlivé varianty je uveden 

v následující tabulce (Tabulka 7). 

Tabulka 7 Porovnání parametrů jednotlivých variant FIPS 203 

Varianta k η₁ η₂ dᵤ dᵥ 

ML-KEM-512 2 3 2 10 4 

ML-KEM-768 3 2 2 10 4 

ML-KEM-1024 4 2 2 11 5 

(zdroj: [9]) 

Na základě rozdílů v konstrukčních parametrech jednotlivých variant, se liší také výsledné 

velikosti veřejného a soukromého klíče i velikost zapouzdřeného klíče. Vyšší bezpečnostní 

kategorie zpravidla vyžadují větší matice a delší šumové vektory, což vede k většímu objemu 

dat. Velikost zapouzdření označuje počet bajtů potřebných pro předání šifrovaného výstupu, 

který slouží k bezpečné distribuci sdíleného tajemství při výměně klíče. Přehled těchto 

hodnot je uveden v následující tabulce (Tabulka 8). 
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Tabulka 8 Porovnání variant FIPS 203 

Varianta Bezpečnostní 

kategorie 

Úroveň 

Bezpečnosti 

(bits) 

Velikost klíčů 

(B) 

Velikost 

zapouzdření 

(B) 

ML-KEM-512 Kategorie 1 128 2432 768 

ML-KEM-768 Kategorie 3 192 3584 1088 

ML-KEM-1024 Kategorie 5 256 4736 1568 

(zdroj: [9]) 

3.1.2 KEM Mechanismus 

Mechanismus KEM definovaný ve FIPS 203 poskytuje bezpečný způsob pro výměnu 

šifrovacích klíčů v asymetrických kryptosystémech. Proces fungování ML-KEM se skládá 

ze tří hlavních fází: generování klíčů, zapouzdření klíče a odpouzdření klíče. 

 

Obrázek 6 Zjednodušené schéma KEM 

(zdroj: [9]) 
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3.1.3 Tvorba klíčů 

Prvním krokem při implementaci algoritmu ML-KEM podle standardu FIPS 203 je 

vytvoření klíčového páru skládajícího se z veřejného klíče (ek) a soukromého klíče (dk). 

Tento proces zajišťuje funkce ML-KEM.KeyGen(), která nejprve vygeneruje dvě 32bajtové 

náhodné hodnoty d a z, a následně je předá interní funkci ML-KEM.KeyGen_internal() pro 

vlastní generaci klíčového páru. 

Hodnota d slouží jako počáteční vstup pro generování klíčových komponent, zatímco 

hodnota z je součástí soukromého klíče a přispívá k bezpečnosti odpouzdření. Obě hodnoty 

jsou generovány tak, aby byly unikátní pro každou instanci, čímž je zajištěna odolnost vůči 

útokům založeným na opakovaném použití klíčů. Interní funkce následně deterministicky 

generuje veřejný a soukromý klíč. 

Veřejný klíč obsahuje pouze šifrovací klíč pro schéma veřejného klíčového šifrování 

s externím klíčem (Keyed Public-Key Encryption, K-PKE), který je vytvořen pomocí funkce 

K-PKE.KeyGen(). Tento šifrovací klíč zahrnuje veřejnou počáteční hodnotu 𝜌, jenž slouží 

k deterministické regeneraci matice A, a vektor t, vypočítaný jako t = As + e, kde s je tajný 

vektor a e šumový vektor. Oba vektory jsou vzorkovány z binomického rozdělení (CBD). 

Díky použití počáteční hodnoty 𝜌 není nutné ukládat celou matici A, protože ji lze kdykoli 

zpětně rekonstruovat. 

Soukromý klíč obsahuje několik klíčových prvků nezbytných pro bezpečné 

odpouzdření. Zahrnuje dešifrovací klíč specifický pro schéma K-PKE (dkPKE), který 

obsahuje tajný vektor s transformovaný do NTT domény pro efektivní výpočty, dále kopii 

veřejného klíče ek, hash veřejného klíče H(ek) sloužící k ověřování integrity a náhodnou 

hodnotu z, která funguje jako ochranný mechanismus při odpouzdření – v případě, že 

odpouzdření selže, algoritmus místo skutečného tajného klíče vrátí náhodnou hodnotu, čímž 

zvyšuje bezpečnost celého procesu. 

3.1.4 Proces zapouzdření 

Po vygenerování klíčového páru následuje proces zapouzdření, jehož cílem je bezpečně 

přenést sdílený tajný klíč mezi dvěma stranami. Tento proces využívá veřejný klíč 

k vytvoření šifrované zprávy a sdíleného tajného klíče K, který je následně použit pro 

zabezpečenou komunikaci. 
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Zapouzdření je realizováno voláním algoritmu ML-KEM.Encaps(). Než zapouzdření 

proběhne, je nejprve provedena kontrola platnosti veřejného klíče. Tato kontrola zahrnuje 

ověření, zda veřejný klíč má správnou délku 384k + 32 bajtů podle specifikovaného 

parametru, a dále tzv. modulární kontrolu, která ověřuje, že zakódované hodnoty leží 

ve správném rozsahu [0, q–1]. Tento krok je důležitý pro detekci potenciálně neplatných 

nebo podvržených veřejných klíčů. Teprve po úspěšném dokončení těchto kontrol je možné 

přistoupit k samotnému zapouzdření. 

Vlastní proces zapouzdření je realizován interním algoritmem 

ML-KEM.Encaps_internal(), kde m představuje nově vygenerovanou 32bajtovou náhodnou 

hodnotu. Nejprve se vytvoří hash veřejného klíče H(ek), který je spolu s hodnotou m spojen 

a zpracován pomocí hashovací funkce G(). Výstupem tohoto kroku je sdílený tajný klíč 

K a náhodná hodnota r použitá pro šifrování. Pomocí algoritmu K-PKE.Encrypt() je 

následně hodnota m zašifrována a vznikne šifrovaný text c. 

Výsledkem celého procesu je dvojice (c, K), kde c je zašifrovaný text určený k odeslání 

příjemci a K je sdílený tajný klíč, který bude následně použit pro šifrovanou komunikaci. 

Díky této konstrukci není tajný klíč nikdy přenášen přímo, což výrazně zvyšuje odolnost 

systému proti odposlechu a dalším útokům. 

3.1.5 Proces odpouzdření 

Po přijetí šifrovaného textu c následuje proces odpouzdření, jehož cílem je rekonstruovat 

původní sdílený tajný klíč pomocí soukromého klíče. Tento proces je realizován voláním 

algoritmu ML-KEM.Decaps() a zajišťuje, že komunikace zůstane důvěrná i v případě 

přenosu po nezabezpečeném kanálu. 

Proces odpouzdření začíná extrakcí klíčových komponent ze soukromého klíče. Tyto 

komponenty zahrnují dešifrovací klíč K-PKE (dkPKE), který slouží k přímému dešifrování 

šifrovaného textu, dále kopii veřejného klíče ek, hash veřejného klíče H(ek) pro ověřovací 

operace a náhodnou hodnotu z, která se používá jako ochranný mechanismus v případě 

neúspěšného odpouzdření. 

Následuje samotné dešifrování šifrovaného textu pomocí algoritmu K-PKE.Decrypt(). 

Tento krok rekonstruuje hodnotu m’, která by měla odpovídat původně zapouzdřené hodnotě 

m. Z této hodnoty m’ je poté pomocí hashovací funkce odvozen kandidátní sdílený tajný klíč 

K’. Současně se vygeneruje nová verze šifrovaného textu c’ na základě dešifrované hodnoty 

m’ a uloženého veřejného klíče ek. 
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V dalším kroku je provedeno ověření integrity tím, že se porovná přijatý šifrovaný text 

c s nově vygenerovaným šifrovaným textem c’. Pokud se hodnoty c a c’ shodují, je 

odpouzdření považováno za úspěšné a vrácen je vypočítaný sdílený tajný klíč K’. Pokud 

však dojde k nesouladu, což může být důsledkem podvrženého nebo poškozeného 

šifrovaného textu, je místo skutečného klíče vrácena hodnota odvozená z náhodné hodnoty 

z. Tento mechanismus zajišťuje, že odpouzdření je bezpečné i v případě aktivních útoků. 

Takto navržený proces odpouzdření poskytuje vysokou úroveň bezpečnosti a zároveň 

zachovává efektivitu, což je klíčové pro praktické nasazení v prostředích vyžadujících 

kvantově odolné zabezpečení. 

3.1.6 Implementace a využití 

Implementace ML-KEM podle standardu FIPS 203 musí splňovat přísné požadavky 

stanovené NIST, aby byla zajištěna kompatibilita a bezpečnost v kryptografických 

systémech. Implementace musí odpovídat schváleným postupům pro generování náhodných 

hodnot, šifrování a výměnu klíčů, přičemž podléhá federálním regulačním požadavkům. 

NIST plánuje vytvořit validační program, který umožní ověřit, zda konkrétní implementace 

splňuje všechny požadavky standardu. Tento program bude klíčový pro certifikaci 

kryptografických produktů, které využívají ML-KEM v reálných aplikacích. 

Mezi klíčové oblasti využití ML-KEM patří federální informační systémy, kde zajišťuje 

zabezpečenou komunikaci a ochranu citlivých dat. V průmyslovém a komerčním sektoru se 

používá k šifrování databází, zabezpečení cloudu a hybridních postkvantových řešeních. Je 

také vhodný pro zařízení s omezenými zdroji, jako IoT a vestavěné systémy, kde nabízí 

varianty s nízkou výpočetní náročností. Dále se uplatňuje v protokolu Transport Layer 

Security (TLS), virtuálních privátních sítích (VPN – Virtual Private Network) a dalších 

bezpečnostních protokolech., kde nahrazuje RSA a ECC, jež jsou zranitelné vůči kvantovým 

útokům. 

NIST doporučuje jako výchozí variantu ML-KEM-768, protože poskytuje vyvážený 

poměr mezi bezpečností a výkonem, a je tedy vhodná pro většinu aplikací. Varianta 

ML-KEM-512 je určena výhradně pro zařízení s omezenými výpočetními zdroji, kde je 

prioritou rychlost a nízké nároky na paměť, avšak její bezpečnostní úroveň je nižší. Naopak 

ML-KEM-1024, i když nabízí nejvyšší úroveň ochrany, je kvůli větší velikosti klíčů, 

zašifrovaných textů a vyšším výpočetním požadavkům považována za příliš náročnou pro 

běžné použití a vhodná spíše pro kritické aplikace s nejvyššími bezpečnostními požadavky. 
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3.2 FIPS 204 

Standard FIPS 204 definuje algoritmus Module-Lattice-Based Digital Signature Algorithm 

(ML-DSA) [10], který poskytuje bezpečný způsob pro vytváření a ověřování digitálních 

podpisů. Tento algoritmus je navržen jako odolný vůči kvantovým útokům a je postaven na 

mřížkové kryptografii, konkrétně na problému MLWE – stejném problému, na kterém je 

založen i standard FIPS 203. 

ML-DSA vychází z algoritmu CRYSTALS-Dilithium, jenž byl vybrán jako vítězný 

kandidát třetího kola standardizačního procesu NIST v kategorii digitálních podpisů. 

Algoritmus ML-DSA umožňuje vytváření a ověřování digitálních podpisů pomocí 

asymetrické kryptografie. Pomocí soukromého klíče lze podepsat digitální zprávu, přičemž 

pravost podpisu může následně ověřit kdokoli, kdo má k dispozici odpovídající veřejný klíč. 

Tento mechanismus zajišťuje integritu a autenticitu podepsaných dat 

3.2.1 Varianty 

Standard FIPS 204 definuje tři varianty algoritmu ML-DSA: ML-DSA-44, 

ML-DSA-65 a ML-DSA-87. Každá z těchto variant odpovídá jiné bezpečnostní kategorii 

a nabízí jiný kompromis mezi úrovní ochrany, výpočetní náročností a velikostí klíčových 

dat. Díky tomu je možné algoritmus nasadit v široké škále scénářů – od omezených zařízení 

až po kritickou infrastrukturu. Všechny varianty navíc podporují dva režimy 

podepisování: běžný deterministický režim a tzv. zabezpečený (hedged) režim, který 

kombinuje interní a externí náhodnost a zvyšuje odolnost algoritmu vůči selhání generátoru 

náhodných čísel. 

Všechny tři varianty využívají stejné základní parametry, které definují kryptografické 

prostředí algoritmu. Jedním z těchto parametrů je modul q, ve kterém probíhají všechny 

výpočty – operace se tedy provádějí v kruhu Zq, kde q = 8380417. Dále je to parametr ζ, což 

je odmocnina jednotky používaná v rámci NTT, která je klíčová pro efektivní násobení 

polynomů. V tomto případě je ζ = 1753, což je 512. odmocnina jednotky v Zq. Třetím 

společným parametrem je d, což je počet bitů, které se odstraňují z hodnoty t během podpisu 

tento krok slouží ke kompresi podpisu a zmenšení výsledných dat. Hodnota parametru d je 

pro všechny varianty rovna 13. 

Naopak v ostatních parametrech se jednotlivé varianty liší. Patří sem zejména rozměry 

matic k a l, které určují velikost mřížky a mají přímý vliv na bezpečnost a velikost klíčových 
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dat. Dále se liší parametr η, který určuje rozsah hodnot pro generování tajného klíče – vyšší 

hodnota znamená větší šum, což zvyšuje bezpečnost, ale i výpočetní náročnost. Parametr ω 

pak udává maximální počet nenulových koeficientů v nápovědě h, čímž ovlivňuje velikost 

podpisu a rychlost jeho ověřování. Dalším odlišujícím parametrem je τ, což je počet 

nenulových prvků (±1) ve vektoru výzvy c, který se používá při ověřování podpisu. 

Parametry γ₁ a γ₂ určují rozsah koeficientů pro hodnoty y a pro nízkořádové zaokrouhlování 

během výpočtů – ovlivňují tedy přesnost operací i odolnost vůči útokům. Konkrétní hodnoty 

těchto parametrů jsou uvedeny v následující tabulce (Tabulka 9). 

Tabulka 9 Porovnání parametrů jednotlivých variant FIPS 204 

Varianta (k, l) 𝜂 𝜔 τ γ₁ γ₂ 

ML-DSA-44 (4, 4) 2 80 39 217 (q-1) /88 

ML-DSA-65 (6, 5) 4 55 49 219 (q-1) /32 

ML-DSA-87 (8, 7) 2 75 60 219 (q-1) /32 

(zdroj: [10]) 

Na základě rozdílů v konstrukčních parametrech jednotlivých variant a jejich přiřazení 

k různým bezpečnostním kategoriím se liší také výsledné velikosti klíčů a podpisů. Vyšší 

bezpečnostní úroveň zpravidla znamená větší rozměry matic a přísnější parametry šumu, což 

vede k nárůstu velikosti veřejného i soukromého klíče a delšímu podpisu. 

Tabulka 10 Porovnání variant FIPS 204 

Varianta Bezpečnostní 

kategorie 

Úroveň 

Bezpečnosti 

(bits) 

Velikost klíčů 

(B) 

Velikost 

podpisu 

(B) 

ML-DSA-44 Kategorie 2 128 3872 2420 

ML-DSA-65 Kategorie 3 192 5984 3309 

ML-DSA-87 Kategorie 5 256 7488 4627 

(zdroj: [10]) 

3.2.2 Tvorba klíčů 

První fází algoritmu ML-DSA je generování klíčového páru, které začíná voláním 

funkce ML-DSA.KeyGen(), která vrací veřejný a soukromý klíč. Nejprve se vygeneruje 

32bajtový náhodná hodnota 𝜉, který slouží jako základ pro odvození všech potřebných 
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klíčových komponent. Tato hodnota je vstupem do interní funkce 

ML-DSA.KeyGen_internal(), která z něj deterministicky vytvoří trojici hodnot: 32bajtovou 

veřejnou počáteční hodnotu 𝜌, 64bajtovou soukromou počáteční hodnotu 𝜌′ a 32bajtovou 

pomocnou hodnotu K určenou pro proces podepisování. 

Veřejný počáteční hodnota 𝜌 slouží k deterministickému generování matice A 

reprezentované v NTT doméně, která se používá při výpočtu veřejného vektoru. Ze 

soukromé hodnoty 𝜌′ jsou následně vytvořeny dva tajné vektory s₁ a s₂ s krátkými koeficienty 

omezenými na rozsah [−𝜂, 𝜂]. Následně se spočítá vektor t = A s₁ + s₂, který se dále rozdělí 

pomocí funkce Power2Round() na komprimovanou veřejnou část t1 a tajnou část t0 

obsahující dolní bity koeficientů. 

Veřejný klíč (public key, pk), který slouží pro ověřování podpisu, je reprezentován jako 

binární řetězec obsahující veřejnou počáteční hodnotu ρ a komprimovaný vektor t₁. 

Soukromý klíč (secrete key, sk) je tvořen následujícími komponentami: veřejnou počáteční 

hodnotou ρ, pomocnou počáteční hodnotou K, 64bajtovým hashem veřejného klíče tr, 

tajnými vektory s₁ a s₂ a vektorem t₀. Tato struktura zajišťuje, že všechny potřebné informace 

pro bezpečné a efektivní podepisování jsou obsaženy přímo v soukromém klíči, bez nutnosti 

dodatečných vstupů. 

3.2.3 Proces podepisování 

Druhou fází algoritmu ML-DSA je vytvoření podpisu zprávy pomocí soukromého klíče. 

Tento proces zajišťuje funkce ML-DSA.Sign(), která přijímá soukromý klíč, podepisovanou 

zprávu a volitelný kontextový řetězec. Pokud je délka kontextu větší než 255 bajtů, 

algoritmus vrací chybu. Jinak je vygenerována 32bajtová náhodná hodnota rnd. V základní 

zabezpečené variantě je získána z kryptografického generátoru, zatímco v deterministické 

variantě je nahrazena nulovým řetězcem. 

Před vlastním podepisováním je původní zpráva rozšířena o informace o délce a obsahu 

kontextu a následně zakódována do bitového řetězce. Takto připravená zpráva M‘, spolu 

s náhodnou hodnotou rnd a soukromým klíčem sk, je následně předána do interní funkce 

ML-DSA.Sign_internal(). 

Tato funkce provádí samotný výpočet podpisu nad zprávou a soukromým klíčem. Jde 

o hlavní kryptografickou část podepisování, která probíhá buď v náhodné nebo 

deterministické variantě. Obě verze využívají stejné postupy, liší se pouze v tom, zda je při 

každém podpisu použita čerstvá náhodná hodnota. 
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Nejprve se ze soukromého klíče získají všechny potřebné komponenty: veřejný 

počáteční hodnota ρ, tajné hodnoty K, s₁, s₂, t₀ a hash veřejného klíče. Z těchto hodnot se 

zkonstruuje interní reprezentace zprávy, která se spolu s náhodností použije k vytvoření 

privátního náhodné počáteční hodnoty pro daný podpis. 

Podpis se generuje v takzvané smyčce s opakováním vzorkování (rejection sampling), 

která opakovaně vytváří návrhy podpisů a kontroluje jejich platnost. Nejprve je náhodně 

vygenerován vektor y, z něj se spočítá takzvaný závazek w₁, který slouží jako základ pro 

vytvoření výzvy c, ta je odvozena z kombinace w₁ a zprávy. Poté se vypočítá podpisová 

hodnota z = y + cs₁. Pokud z nebo další odvozené hodnoty překračují definované limity, 

návrh je zamítnut a celý postup se opakuje. 

Jakmile jsou všechny podmínky splněny, algoritmus dopočítá takzvanou nápovědu h, 

která slouží k ověření podpisu bez nutnosti znát tajné části klíče. Výsledný podpis je složen 

z trojice hodnot: výzva c, podpisová hodnota z a nápověda h. Tyto části jsou zakódovány do 

bajtového řetězce a vráceny jako finální podpis. 

3.2.4 Proces ověřování 

Závěrečným krokem algoritmu ML-DSA je ověření platnosti podpisu pomocí veřejného 

klíče. Tuto operaci zajišťuje funkce ML-DSA.Verify(), která jako vstup přijímá veřejný klíč, 

podepsanou zprávu, podpis a volitelný kontext. Pokud je délka kontextu příliš velká, 

algoritmus ihned vrací chybu. V opačném případě je zpráva zformátována do 

standardizované podoby a spolu s veřejným klíčem a podpisem předána do funkce 

ML-DSA.Verify_internal(). 

Interní ověřovací algoritmus provede veškeré potřebné kontroly. Nejprve rozkóduje 

veřejný klíč a podpis a z nich získá potřebné komponenty – zejména závazek, podpisovou 

hodnotu a tzv. nápovědu h, která slouží k rekonstruování závazku během ověřování bez 

znalosti tajných hodnot. Dále rekonstruuje závazek podepisující strany a znovu vygeneruje 

výzvu, která by měla odpovídat té původní, obsažené v podpisu. Zároveň provádí kontrolu 

velikosti koeficientů v podpisové hodnotě a ověřuje, že nápověda obsahuje přípustný počet 

nenulových prvků. 

Pokud všechny ověřovací podmínky proběhnou úspěšně a znovu vypočtená výzva 

odpovídá té původní, funkce vrací hodnotu „TRUE“, tedy že podpis je platný. V opačném 

případě vrací „FALSE“. 
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3.2.5 Implementace a využití 

Implementace ML-DSA podle standardu FIPS 204 musí splňovat přísné požadavky 

stanovené NIST s cílem zajistit kompatibilitu, bezpečnost a odolnost vůči kvantovým 

útokům. Každá implementace musí přesně odpovídat definovaným postupům pro 

generování klíčů, podepisování a ověřování podpisů. 

NIST plánuje vytvořit validační program, který umožní ověřit, zda konkrétní 

implementace splňuje všechny požadavky standardu. Tento program bude klíčový pro 

certifikaci kryptografických produktů využívajících ML-DSA v reálných aplikacích, včetně 

ochrany citlivých dat a zabezpečení komunikačních kanálů.  

NIST doporučuje jako výchozí variantu ML-DSA-65, protože poskytuje vyvážený 

poměr mezi bezpečností a výkonem. Varianta ML-DSA-44 je určena pro aplikace 

s omezenými výpočetními zdroji, kde je prioritou rychlost a nízké nároky na paměť. Naopak 

ML-DSA-87 je navržena pro kritické aplikace s nejvyššími bezpečnostními požadavky, ale 

kvůli větší velikosti podpisů a vyšší výpočetní náročnosti je méně vhodná pro běžné použití. 

3.3 FIPS 205 

Standard FIPS 205 definuje Stateless Hash-Based Digital Signature Algorithm (SLH-DSA) 

[14], který byl vybrán jako alternativní postkvantový standard pro bezpečné digitální 

podpisy. Tento mechanismus je navržen tak, aby poskytoval odolnost vůči kvantovým 

útokům, které by mohly prolomit současné asymetrické kryptografické systémy. SLH-DSA 

je založen na hashovacích funkcích, což zajišťuje jeho bezpečnost. 

SLH-DSA je odvozen od algoritmu SPHINCS+, který byl jedním z finalistů třetího 

kola standardizačního procesu NIST PQC. Hlavní výhodou SLH-DSA je jeho bezstavová 

povaha – na rozdíl od jiných hash-based podpisových schémat, jako je například eXtended 

Merkle Signature Scheme (XMSS), nepotřebuje algoritmus vést záznam o vnitřním stavu 

mezi jednotlivými podpisy. Tím je odstraněno riziko opětovného použití klíčů, což zvyšuje 

bezpečnost a zároveň zjednodušuje implementaci. 

3.3.1 Varianty 

Standard FIPS 205 definuje několik variant SLH-DSA, které se liší v použitých parametrech, 

bezpečnostní úrovni a efektivitě. Standard nabízí ve svých variantách dvě různé hashovací 

funkce, a to Secure Hash Algorithm 2 (SHA-2) a SHAKE256. Hashovací funkce SHA-2 

představuje klasický přístup používaný v mnoha současných systémech, zatímco 
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SHAKE256, založený na konstrukci SHA-3, nabízí větší flexibilitu díky možnosti variabilní 

délky výstupu. 

Kromě volby hashovací funkce se jednotlivé varianty liší také bezpečnostní úrovní. 

FIPS 205 specifikuje tři bezpečnostní úrovně. 128bitová bezpečnost, která odpovídá 

bezpečnostní kategorii 1, je vhodná pro méně náročné aplikace díky menší velikosti klíčů 

a rychlejším výpočtům. 192bitová bezpečnost, spadající do bezpečnostní kategorie 3, 

představuje vyvážený kompromis mezi výkonem a úrovní ochrany. Nabízí vyšší odolnost 

vůči útokům než 128bitová varianta, přičemž si zachovává přijatelnou velikost podpisu 

i výpočetní náročnost. 256bitová bezpečnost, zařazená do bezpečnostní kategorie 5, 

poskytuje nejvyšší úroveň ochrany a je určena pro kritické systémy s požadavky na 

dlouhodobou bezpečnost i v postkvantovém prostředí. Tato varianta je náročnější na 

výpočetní výkon a generuje větší podpisy, ale nabízí maximální kryptografickou odolnost. 

Další odlišností mezi variantami je režim provozu algoritmu. Označení „s“ (small) 

představuje režim optimalizovaný pro co nejmenší velikost podpisu, zatímco „f“ (fast) 

označuje režim zaměřený na co nejvyšší rychlost zpracování. Kombinací těchto tří 

bezpečnostních úrovní, dvou typů hashovacích funkcí a dvou režimů provozu vzniká celkem 

12 různých variant SLH-DSA, které pokrývají široké spektrum požadavků na bezpečnost 

a výkon. 

Tabulka 11 Porovnání variant s režimem provozu „s“ FIPS 205 

Varianta Bezpečnostní 

kategorie 

Úroveň 

Bezpečnosti 

(bits) 

Velikost 

klíčů 

(B) 

Velikost 

podpisu 

(B) 

SLH-DSA-SHA2-128s 

SLH-DSA-SHAKE-128s 

 

Kategorie 1 128 32 7856 

SLH-DSA-SHA2-192s 

SLH-DSA-SHAKE-192s 

 

Kategorie 3 192 48 16224 

SLH-DSA-SHA2-256s 

SLH-DSA-SHAKE-256s 

 

Kategorie 5 256 64 29792 

(zdroj: [13]) 
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Tabulka 12 Porovnání variant s režimem provozu „f“ FIPS 205 

Varianta Bezpečnostní 

kategorie 

Úroveň 

Bezpečnosti 

(bits) 

Velikost 

klíčů 

(B) 

Velikost 

podpisu 

(B) 

SLH-DSA-SHA2-128f 

SLH-DSA-SHAKE-128f 

 

Kategorie 1 128 32 17088 

SLH-DSA-SHA2-192f 

SLH-DSA-SHAKE-192f 

 

Kategorie 3 192 48 35664 

SLH-DSA-SHA2-256f 

SLH-DSA-SHAKE-256f 

 

Kategorie 5 256 64 49856 

(zdroj: [13]) 

3.3.2 Tvorba klíčů 

Prvním krokem při implementaci algoritmu SLH-DSA podle standardu FIPS 205 je 

vytvoření klíčového páru, který se skládá ze soukromého a veřejného klíče. Soukromý klíč 

slouží k podepisování zpráv a musí zůstat důvěrný, zatímco veřejný klíč je určen k ověřování 

podpisů a může být volně distribuován. 

Generování klíčového páru v algoritmu SLH-DSA je realizováno funkcí slh_keygen(), 

která nevyžaduje žádný vstup a vrací dvojici soukromého a veřejného klíče. Prvním krokem 

této funkce je náhodné vygenerování tří hodnot: SK.seed, SK.prf a PK.seed. Tyto hodnoty 

musí být generovány pomocí schváleného generátoru náhodných bitů, přičemž bezpečnostní 

síla tohoto generátoru musí být alespoň 8n bitů, kde n odpovídá velikosti bezpečnostního 

parametru (například 16, 24 nebo 32 bajtů podle zvolené varianty). 

Hodnota SK.seed slouží k deterministickému generování tajných klíčových komponent 

uvnitř dvou vnitřních struktur algoritmu – Forest of Random Subsets (FORS) a XMSS. 

Hodnota SK.prf je určena pro deterministické generování náhodné hodnoty, která se používá 

při vytváření podpisu. PK.seed představuje veřejnou verzi počáteční hodnoty a používá se 

při výpočtu všech veřejných hodnot v rámci schématu. Zajišťuje například oddělení domén 

při využívání hashovacích funkcí, což zvyšuje bezpečnost a jednoznačnost výpočtů. 

Po úspěšném vytvoření těchto hodnot funkce slh_keygen() volá vnitřní proceduru 

slh_keygen_internal(SK.seedm SK.prf, PK.seed), která vypočítá kořen PK.root vrchní 

vrstvy XMSS hypertree. 
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Výsledkem generování je klíčový pár, který se skládá ze soukromého a veřejného klíče. 

Soukromý klíč (SK) obsahuje hodnoty SK.seed, SK.prf, PK.seed a PK.root, zatímco veřejný 

klíč (PK) tvoří dvojice PK.seed a PK.root. Obě složky jsou úzce propojené a navržené tak, 

aby umožňovaly efektivní ověřování podpisů bez nutnosti uchovávat rozsáhlé datové 

struktury. Tato deterministická konstrukce zaručuje, že celý podpisový systém lze 

rekonstruovat pouze na základě několika počátečních hodnot, bez potřeby uchovávat celý 

hashový strom. Tento přístup významně usnadňuje implementaci, zejména v prostředích 

s omezenými výpočetními nebo paměťovými zdroji. 

3.3.3 Proces podepisování 

Proces podepisování v algoritmu SLH-DSA je realizován funkcí slh_sign() nebo její 

variantou hash_slh_sign(), přičemž v obou případech je hlavní výpočet delegován na interní 

funkci slh_sign_internal(). Rozdíl mezi těmito dvěma variantami spočívá v tom, že funkce 

slh_sign() očekává jako vstup celou zprávu, zatímco hash_slh_sign() pracuje s již 

předzpracovanou hashovanou zprávou. Výběr rozhraní závisí na kontextu použití a platí, že 

daný klíčový pár by měl být použit pouze s jednou z těchto funkcí. Podepisování probíhá 

deterministicky a skládá se z několika navazujících kroků, které propojují struktury FORS, 

Winternitz One-Time Signature Plus (WOTS+) a XMSS do hierarchické struktury 

hypertree. 

Prvním krokem je vygenerování tzv. randomizéru – náhodného řetězce R pomocí 

funkce PRFmsg(), která jako vstup využívá SK.prf a náhodný vstup. Následně je vypočítán 

hash zprávy M v kombinaci s hodnotami R, PK.seed a PK.root. Výsledný hash se rozdělí na 

tři části: první část vstupuje do FORS schématu, druhá určuje, který XMSS strom 

v hyperstromu bude použit, a třetí část specifikuje konkrétní WOTS+ klíč. 

Na základě těchto údajů se vytvoří podpis FORS pomocí funkce fors_sign(), přičemž 

současně je z podpisových údajů odvozen veřejný klíč FORS. Tento klíč pak vstupuje jako 

vstup do vyšší vrstvy – konkrétní XMSS větve. Pro podepsání FORS klíče se v XMSS 

použije podpisové schéma WOTS+, které následně využije autentizační cestu k dosažení 

kořene stromu. Tento proces se může rekurzivně opakovat v rámci vrstev hyperstromu. 

Výsledný podpis se skládá ze tří hlavních částí. První z nich je náhodná hodnota 

R - randomizér, která zajišťuje jedinečnost každého podpisu a přispívá k jeho bezpečnosti. 

Druhou složkou je FORS podpis, jenž reprezentuje první vrstvu hashového podpisového 

schématu a vzniká na základě části hashované zprávy. Třetí částí je takzvaný hyperstrom 
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podpis, který se skládá z podpisů schématu WOTS+ a příslušných autentizačních cest 

v XMSS stromech, jež dohromady tvoří spojení mezi podpisem a kořenem celé hashové 

struktury. Celý podpis je zkonstruován jako jeden binární celek a jeho velikost závisí na 

zvolených parametrech algoritmu, konkrétně na hloubce hyperstromu, počtu vrstev a typu 

použité hashovací funkce. 

 

Obrázek 7 Struktura podpisu SLH-DSA v hierarchii hyperstrom 

(zdroj: [13]) 

3.3.4 Proces ověřování 

Proces ověřování podpisu v algoritmu SLH-DSA je realizován funkcí slh_verify() nebo její 

variantou hash_slh_verify(), přičemž v obou případech se ověřovací operace předává interní 

funkci slh_verify_internal(). Stejně jako u podepisování funkce slh_verify() pracuje 

s původní zprávou, zatímco hash_slh_verify() očekává již vytvořený hash zprávy. Výběr 

závisí na kontextu aplikace a použití odpovídající varianty musí být v souladu s tím, jak byl 

vytvořen podpis. 

Ověřování začíná výpočtem hash hodnoty zprávy pomocí funkce Hmsg(), která 

kombinuje náhodnou hodnotu z podpisu, veřejnou počáteční hodnotu, kořen klíče a původní 
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zprávu. Výsledný hash se rozdělí na tři části – ty určují vstup do FORS, pozici v XMSS 

stromě a výběr WOTS+ klíče. 

Z první části digestu a podpisu se zrekonstruuje veřejný klíč FORS. Ten je dále 

ověřován přes vrstvy XMSS: v každé vrstvě se pomocí WOTS+ ověří podpis a pomocí 

autentizační cesty se vypočítá uzel Merkleova stromu. Tento proces pokračuje přes všechny 

vrstvy až k vrcholu hyperstromu. 

Na závěr se vypočtený kořen hyperstromu porovná s hodnotou PK.root z veřejného 

klíče. Pokud se shodují, podpis je platný „TRUE“, jinak je neplatný „FALSE“. Ověřování 

je plně deterministické a nevyžaduje uchovávání stavu. 

3.3.5 Implementace a využití 

Standard FIPS 205 představuje alternativu ke standardu digitálního podpisu FIPS 204, 

zejména v prostředích, kde je prioritou jednodušší a robustní implementace a kde není kladen 

důraz na minimalizaci velikosti podpisu. 

Implementace algoritmu může být realizována v softwaru, firmwaru, hardwaru nebo 

jejich kombinaci. Standard taktéž umožňuje nahradit jakýkoli výpočetní krok alternativním 

matematicky ekvivalentním postupem, pokud pro všechny vstupy produkuje správný 

výstup. Díky tomu mohou vývojáři optimalizovat implementace například pro rychlost, 

paměť nebo energetickou náročnost. NIST plánuje zavedení validačního programu, který 

bude testovat implementace digitálních podpisových algoritmů na shodu s požadavky 

standardu. 

Na rozdíl od předchozích FIPS publikací, standard FIPS 205 neurčuje žádnou konkrétní 

výchozí variantu algoritmu. Místo toho ponechává výběr konkrétní varianty na rozhodnutí 

implementátorů nebo bezpečnostních politik konkrétního systému. 

Nakonec je třeba mít na paměti, že i když implementace odpovídá tomuto standardu, 

negarantuje to automaticky bezpečnost celého systému. Implementátor je odpovědný za to, 

že výsledný systém bude bezpečný jako celek – včetně ochrany před útoky postranními 

kanály, správného generování náhodných hodnot a bezpečného mazání citlivých dat. 

3.4 Alternativy ke standardům 

Za alternativy ke standardizovaným postkvantovým algoritmům NIST lze považovat ty 

algoritmy, které nebyly přímo vybrány k okamžité standardizaci, ale postoupily do čtvrtého 
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kola výběru. Tyto kandidáty NIST nadále vyhodnocuje z hlediska bezpečnosti, výkonu 

a implementačních vlastností, a v budoucnu mohou rozšířit portfolio schválených 

postkvantových algoritmů. Výběr těchto alternativ přispívá k větší rozmanitosti a odolnosti 

kryptografických standardů vůči novým typům útoků. Mezi aktuální alternativy ke 

standardizovaným postkvantovým algoritmům NIST patří pouze KEM algoritmy, tedy 

schémata pro výměnu klíčů a šifrování. V této fázi nejsou žádné alternativní kandidáty 

v kategorii digitálních podpisů. 

3.4.1 BIKE 

BIKE je postkvantový algoritmus pro výměnu klíčů založený na teorii kódování. Jeho 

bezpečnost stojí na obtížnosti dekódování binárních kódů, což je problém, který by měl být 

bezpečný i proti kvantovým útokům. BIKE používá tzv. bit-flipping dekódování, což 

znamená, že při dešifrování opakovaně upravuje jednotlivé bity, dokud nenajde správné 

řešení. 

Hlavní výhodou BIKE je, že je rychlý a jednoduchý na implementaci ve srovnání 

s ostatními ne-mřížkovými KEM algoritmy. Díky odlišnému matematickému principu je 

také vhodný jako alternativa ke stávajícím standardům a zvyšuje celkovou bezpečnostní 

rozmanitost. 

Nevýhodou BIKE je, že existuje nenulová pravděpodobnost selhání dešifrování, 

protože bit-flipping dekódování není vždy stoprocentně spolehlivé. Zatím také není přesně 

známa horní hranice této pravděpodobnosti a nebyly vyloučeny všechny možné slabé klíče. 

Z těchto důvodů je BIKE stále podrobován dalšímu zkoumání v rámci NIST standardizace. 

3.4.2 Classic McEliece 

Classic McEliece je postkvantový algoritmus pro výměnu klíčů založený na teorii kódování. 

Jeho bezpečnost je postavena na obtížnosti dekódování kódů Goppa, což je problém, který 

odolává známým útokům i v případě použití kvantových počítačů. Algoritmus má za sebou 

dlouhou historii výzkumu a prakticky nebyl prolomen ani klasickými, ani kvantovými 

metodami. 

Mezi hlavní výhody Classic McEliece patří vysoká úroveň bezpečnosti ověřená 

desetiletími analýz a extrémně rychlé operace šifrování a dešifrování. Algoritmus generuje 

velmi malý šifrovaný text, což je praktické při přenosu dat, a jeho bezpečnost není závislá 

na mřížkových problémech, takže přináší diverzitu mezi postkvantovými algoritmy. 
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Nevýhodou je hlavně velikost veřejného klíče, která je oproti jiným algoritmům velmi 

velká a může komplikovat nasazení v prostředích s omezenou pamětí nebo šířkou pásma. 

Také není vhodný pro všechny scénáře použití právě kvůli těmto rozměrům klíče 

3.4.3 HQC 

HQC je postkvantový KEM algoritmus, který rovněž patří do oblasti kryptografie založené 

na teorii kódování. Bezpečnost HQC vychází z obtížnosti dekódování kvazicyklických kódů 

s danou Hammingovou vahou, což je úloha odolná i vůči kvantovým útokům. HQC tím 

rozšiřuje nabídku alternativ k mřížkovým kryptosystémům. 

Mezi hlavní výhody HQC patří rovnováha mezi velikostí klíčů, rychlostí a bezpečností. 

Algoritmus nabízí matematickou rozmanitost v rámci portfolia postkvantových algoritmů, 

což je důležité pro zvýšení celkové odolnosti kryptografických systémů. HQC není závislý 

na stejných bezpečnostních předpokladech jako například Kyber, což snižuje riziko plošného 

prolomení. 

Nevýhodou HQC jsou větší velikosti klíčů v porovnání s některými mřížkovými 

algoritmy a potřeba dalších bezpečnostních analýz, protože dosud nebyla všechna rizika plně 

prozkoumána. Zároveň není tak dlouho prověřen jako některé jiné kódové kryptosystémy. 

3.4.4 SIKE 

SIKE (Supersingular Isogeny Key Encapsulation) je speciální postkvantový algoritmus, 

jehož bezpečnost je založena na obtížnosti nalezení isogenie mezi supersingulárními 

eliptickými křivkami. Na rozdíl od předchozích algoritmů SIKE nevyužívá mříže ani 

kódování, ale zcela jiný, unikátní matematický princip. 

Významnou výhodou SIKE je velmi malá velikost veřejných klíčů i zašifrovaného 

textu, což je praktické zejména pro použití v prostředích s omezenými zdroji, jako jsou 

mobilní zařízení nebo internet věcí. SIKE přináší do postkvantové kryptografie další 

diverzitu a umožňuje zkoumat nové možnosti ochrany proti kvantovým útokům. 

Nevýhodou SIKE je výrazně nižší rychlost v porovnání s ostatními kandidáty, což může 

být problém při nasazení v aplikacích s požadavkem na vysoký výkon. Navíc v posledních 

letech prošel SIKE několika významnými kryptoanalytickými útoky, což vyvolalo otázky 

ohledně jeho skutečné bezpečnosti. Z těchto důvodů zůstává SIKE nadále předmětem 

dalšího výzkumu a diskusí v rámci standardizačního procesu 
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4 PŘECHOD NA POSTKVANTOVOU KRYPTOGRAFII 

S příchodem kvantových počítačů, které mohou ohrozit současné kryptografické standardy, 

se stává klíčovým úkolem přechod na postkvantovou kryptografii. Tento proces zahrnuje 

nejen vývoj nových algoritmů, ale také jejich implementaci do existujících systémů. Kvůli 

komplexitě této transformace je důležité zajistit jednotný a koordinovaný přístup na 

mezinárodní úrovni. Proto organizace, jako je NIST ve Spojených státech a Národní úřad 

pro kybernetickou bezpečnost (NÚKIB) v České republice, poskytují doporučení 

a standardy pro efektivní a bezpečný přechod. 

4.1 Doporučení NÚKIB 

V únoru roku 2025 NÚKIB aktualizoval dokument „Minimální požadavky na kryptografické 

algoritmy“, kde se intenzivně zabývá přechodem na postkvantovou kryptografii a popisuje 

jednotlivé přístupy k řešení kvantové hrozby. 

NÚKIB doporučuje, aby v úvodní fázi přechodu na postkvantovou kryptografii byla 

tato technologie nasazována pouze ve formě hybridního přístupu, tedy ve spojení s tradiční 

asymetrickou kryptografií. „Na tomto přístupu stále trvá i většina evropských 

bezpečnostních autorit jako například německá BSI a francouzská ANSSI.“ 

Hybridní přístup poskytuje vyšší míru bezpečnosti, protože algoritmy postkvantové 

kryptografie jsou sice navrženy a testovány proti útokům vedeným pomocí kvantových 

počítačů, ale nemusí být nutně odolné proti útokům klasických počítačů. Spojením 

s klasickou kryptografií tak hybridní řešení minimalizuje rizika vyplývající z možné 

existence zatím neznámých zranitelností postkvantových algoritmů. 

NÚKIB udává, že existují různé úrovně kvantové zranitelnosti jednotlivých typů 

kryptografických algoritmů. Zatímco asymetrické algoritmy (RSA, Digital Signature 

Algorithm (DSA), Elliptic Curve Digital Signature Algorithm (ECDSA)) jsou vysoce 

zranitelné vůči Shorovu algoritmu a jejich nahrazení postkvantovou kryptografií je 

považováno za naléhavé, v případě symetrických algoritmů a hashovacích funkcí lze 

zranitelnost výrazně omezit použitím delších klíčů nebo výstupů. U hashů je doporučená 

délka zvýšena z 256 na 384 bitů, zatímco u symetrické šifry je minimální délka klíčů 

256 bitů. 

NÚKIB uvádí, že existují konkrétní scénáře, které si vyžadují naléhavější přechod 

k používání postkvantové kryptografie. Prvním je scénář označovaný jako „Harvest now, 
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decrypt later“, kdy útočník v současnosti zachycuje a dlouhodobě ukládá zašifrovaná data. 

Útočník následně vyčkává, až bude mít k dispozici kryptoanalyticky relevantní kvantový 

počítač, aby tato data zpětně prolomil. Druhým kritickým scénářem je oblast digitálních 

podpisů používaných k ochraně integrity firmware nebo softwaru, kde může být integrita dat 

ohrožena i mnoho let po vytvoření podpisu. V těchto případech NÚKIB doporučuje 

urychlený přechod na hybridní řešení s využitím důvěryhodných postkvantových algoritmů. 

Právě za důvěryhodné algoritmy udává NÚKIB standardizované algoritmy instituce 

NIST, zejména ML-KEM a ML-DSA, které jsou primárními kandidáty pro nasazení díky 

kombinaci jejich výkonnosti a silných bezpečnostních záruk. V rámci hybridních řešení 

doporučuje NÚKIB použití bezpečnostních úrovní 3 a 5. 

V souvislosti s přechodem na postkvantovou kryptografii doporučuje NÚKIB také 

zavedení kryptografické agility, tedy schopnosti systémů a infrastruktur rychle přecházet 

mezi různými kryptografickými algoritmy. Tato agilita zajistí, že organizace budou moci 

pružně reagovat na budoucí změny ve vývoji kryptografických technologií či případně nově 

objevené zranitelnosti.[15] 

NÚKIB také implementoval podporu hybridního algoritmu X25519Kyber768 na svém 

portálu, čímž umožnil organizacím testovat kvantově odolnou kryptografii v reálném 

prostředí. Tímto krokem NÚKIB demonstroval, že hybridní přístup je nejen praktický, ale 

také vhodný pro plynulý přechod na postkvantové šifrovací standardy.[25] 

4.2 Doporučení ostatních organizací 

Americké organizace zabývající se kybernetickou bezpečností National Security Agency 

(NSA), Cybersecurity and Infrastructure Security Agency (CISA) a NIST vydaly společné 

doporučení k přípravě přechodu na postkvantovou kryptografii. Organizace by měly sestavit 

plán připravenosti na kvantové hrozby, provést analýzu aktuálních kryptografických 

systémů, spolupracovat s dodavateli technologií a začít prioritně migrovat kritické systémy 

na algoritmy, které budou odolné proti kvantovým počítačům.[26] 

V roce 2024 vydala organizace NSA dokument „CNSA Suite 2.0 and Quantum 

Computing FAQ”, který poskytuje podrobné informace o přechodu na PQC a algoritmech 

CNSA 2.0. Tyto algoritmy, označované jako Commercial National Security Algorithms 

(CNSA), jsou určeny k použití ve všech veřejných standardech. Pro symetrické blokové šifry 

je definován algoritmus AES-256. Pro ustanovení klíčů je doporučen standard FIPS 203 
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(ML-KEM-1024) a pro digitální podpisy, včetně podpisů firmwaru a softwaru, standard 

FIPS 204 (ML-DSA-87). 

NSA v dokumentu uvádí, že všechny systémy národní bezpečnosti (NSS) by měly být 

kvantově odolné do roku 2035. Nové systémy musí být kompatibilní s CNSA 2.0 od 1. ledna 

2027. Veškeré zařízení, které CNSA 2.0 nepodporuje, musí být nahrazeno do 31. prosince 

2030. Od 31. prosince 2031 budou algoritmy CNSA 2.0 povinné. Přechod bude postupný, 

starší algoritmy CNSA 1.0 budou dočasně fungovat souběžně s CNSA 2.0. NSA očekává, 

že u některých zařízení bude nutná i výměna hardwaru. 

Podle dokumentu NSA důvěřuje algoritmům CNSA 2.0 a nevyžaduje hybridní přístup, 

ale uznává jeho možné řešení. Upozorňuje však na vyšší komplexitu a případné chyby při 

implementaci hybridních řešeních.[27] 

V rámci Evropské unie (EU) vydalo 18 partnerů společné prohlášení o přechodu na 

postkvantovou kryptografii, ve kterém doporučují koordinovaný přístup v rámci Evropské 

unie. Stejně jako NÚKIB, EU zastává stejný přístup a rovněž zdůrazňuje význam hybridních 

řešení, která kombinují klasické a postkvantové algoritmy, a potřebu zajistit kryptografickou 

agilitu pro snadné přizpůsobení budoucím algoritmům. Dokument dále upozorňuje na riziko 

strategie „store now, decrypt later“ a doporučuje, aby členské státy vypracovaly plán 

migrace na PQC v souladu s mezinárodními standardy. Pro zajištění kvantové odolnosti 

infrastruktury EU byla na základě doporučení Evropské komise vytvořena pracovní skupina 

pro přechod na PQC, kterou společně vedou Francie, Nizozemsko a Německo. Evropská 

komise zároveň vyzývá všechny členské státy EU k aktivní účasti na přípravě plánu migrace 

na PQC.[28] 

Čína přijala aktivní přístup k postkvantové kryptografii prostřednictvím programu 

Next-generation Commercial Cryptographic Algorithms (NGCC), který oznámil Institut pro 

standardy komerční kryptografie (ICCS). Program zahrnuje návrhy na nové algoritmy pro 

asymetrické šifrování (NGCC-PK – Public-Key Algorithms), hashování (NGCC-

CH - Cryptographic Hash Algorithms) a blokové šifrování (NGCC-BC – Block Ciphers). 

Algoritmy budou hodnoceny podle bezpečnosti, výkonu a dalších kritérií, přičemž vítězné 

návrhy mohou být standardizovány. Tento přístup ukazuje snahu Číny o technologickou 

nezávislost a zvýšení bezpečnosti vůči kvantovým hrozbám.[29; 30] 

Jižní Korea založila Výbor pro kvantovou strategii, který má koordinovat aktivity 

v oblasti kvantových technologií a zvýšit konkurenceschopnost země v této oblasti. Výbor 
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spravuje fond na podporu startupových projektů ve výši 15 milionů dolarů ročně. Plán 

zahrnuje vývoj kvantových počítačů, rozšíření kvantové infrastruktury a zajištění kvantově 

odolné kryptografie, která se plánuje integrovat do národních bezpečnostních systémů. 

Přestože vláda oznámila nárůst rozpočtu na tyto technologie o 51,4 % na 136 milionů dolarů, 

někteří odborníci se obávají, že to nebude dostatečné v konkurenci s masivními investicemi 

ze strany USA a Číny.[31] 

Japonsko také aktivně implementuje postkvantovou kryptografii prostřednictvím 

spolupráce mezi vládními agenturami a soukromým sektorem. V lednu 2025 společnost 

PQShield, specializující se na PQC, oznámila své zapojení do programu financovaného 

organizací New Energy and Industrial Technology Development Organization (NEDO). 

Společnost hraje klíčovou roli při návrhu nových algoritmů a protokolů. Projekt poběží od 

roku 2024 do roku 2026 a má za cíl vytvořit robustní standardy PQC v souladu 

s doporučeními NIST.[32] 
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5 HYBRIDNÍ ALGORITMUS X25519MLKEM768 

Hybridní algoritmus X25519MLKEM768 představuje kombinaci klasické kryptografie na 

bázi eliptických křivek a postkvantové kryptografie založené na mřížkách. Algoritmus 

X25519, který využívá eliptickou křivku pro efektivní výměnu klíčů, je spojen 

s postkvantovým algoritmem ML-KEM768, standardizovaným NISTem jako FIPS203, 

který je založen na mřížkových problémech a poskytuje odolnost vůči kvantovým útokům. 

Tato kombinace vytváří robustní a vysoce bezpečné řešení pro výměnu klíčů, které je odolné 

vůči útokům jak klasických, tak kvantových počítačů. Hybridní přístup je obzvláště vhodný 

pro zabezpečení Hypertext Transfer Protocol Secure (HTTPS) komunikace a je doporučován 

jako přechodné řešení před plným nasazením postkvantových algoritmů.[33] 

5.1 X25519 – Algoritmus eliptických křivek 

Algoritmus X25519 je založen na eliptických křivkách a využívá se pro bezpečnou výměnu 

klíčů v rámci protokolu Elliptic Curve Diffie-Hellman (ECDH). Je založen na křivce 

Curve25519, kterou navrhl Daniel J. Bernstein pro dosažení vysoké úrovně bezpečnosti 

a zároveň efektivity při šifrování. 

Každý uživatel má 32 bajtový privátní a 32 bajtový veřejný klíč. Při navazování spojení 

si dvě strany vymění své veřejné klíče. Pomocí svého privátního klíče a veřejného klíče 

druhé strany pak spočítají sdílené tajemství pomocí funkce Curve25519(). Výsledný klíč 

se použije pro šifrování komunikace. 

Algoritmus nabízí 128bitovou bezpečnost, je odolný vůči útokům postranními kanály 

a poskytuje ochranu i proti útokům na úrovni mezipaměti. Mezi hlavní výhody patří vysoká 

rychlost, krátké klíče (32 bajtů) s vysokou úrovní bezpečnosti a snadná implementace 

v různých kryptografických knihovnách (OpenSSL, BoringSSL, LibreSSL). Algoritmus je 

široce využíván v protokolech jako TLS, Secure Shell (SSH) a Internet Protocol Security 

(IPsec), kde zajišťuje bezpečnou komunikaci [34] 

5.2 Princip fungování 

Algoritmus je navržen pro zabezpečení v rámci protokolu TLS 1.3 a funguje následovně. 

Začíná se s generováním klíčových párů na klientově straně. Klient vygeneruje veřejný 

a privátní klíč pro ML-KEM a taktéž klíčový pár pro X25519. Klient také vygeneruje 

samostatný pár X25519 veřejného a privátního klíče jako záložní možnost pro případ, že 
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server nepodporuje X25519MLKEM 768. Pokud server tento protokol podporuje, záložní 

klíč se vůbec nepoužije. 

Klient poté zahájí standardní TLS 1.3 handshake zprávou ClientHello, která obsahuje 

skupiny “X25519MLKEM768 ” a také “X25519” v sekci Supported Groups. V sekci 

KeyShare klient odešle dva klíče: hybridní klíč, vytvořený zřetězením veřejného KEM klíče 

s veřejným X25519 klíčem, a samostatný veřejný klíč X25519. 

Server následně extrahuje veřejné klíče X25519 a KEM z kombinovaného klíče. Poté 

server vygeneruje vlastní pár veřejného a soukromého klíče pro X25519. Pomocí svého 

soukromého klíče a veřejného klíče od klienta spočítá sdílené tajemství pomocí algoritmu 

X25519. 

Server dále použije funkci zapouzdření KEM s veřejným KEM klíčem klienta 

k výpočtu druhé části sdíleného tajemství a šifrovaného textu KEM. Obě sdílená tajemství 

jsou následně zřetězena do finálního sdíleného tajemství, které je použito pro výpočet klíčů 

v rámci TLS 1.3. Nakonec server zřetězí svůj veřejný X25519 klíč se šifrovaným textem 

KEM a odešle výsledný klíč zpět klientovi v rámci zprávy ServerHello. 

Klient poté obdrží veřejný X25519 klíč od serveru a zkombinuje jej se svým 

soukromým klíčem X25519 k výpočtu sdíleného tajemství. Následně použije šifrovaný text 

KEM spolu se svým privátním KEM klíčem k výpočtu druhé části sdíleného tajemství 

pomocí funkce Decaps(). Stejně jako na straně serveru, obě tajemství zřetězí do finálního 

sdíleného tajemství, které použije jako vstup do funkce HKDF-Extract v rámci protokolu 

HKDF (HMAC-based Key Derivation Function), který slouží k bezpečné derivaci 

šifrovacích klíčů v protokolu TLS 1.3 (Transport Layer Security). Komunikace poté 

pokračuje podle standardního průběhu TLS 1.3.[35] 
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Obrázek 8 Zjednodušený princip fungování hybridního algoritmu X25519MLKEM768 

(zdroj: [35]) 

5.3 Reálné využití 

Tento hybridní algoritmus, jak už bylo napsáno, byl navržen primárně pro zajištění odolnosti 

při navazování šifrované komunikace pomocí TLS 1.3. Nyní je X25519MLKEM768 po 

standardizaci organizací NIST experimentálně využíván v prohlížečích Google Chrome 

a Mozilla Firefox, přičemž u obou je nutné aktivovat hybridní algoritmus v nastavení. 

Cloudové služby jako Cloudflare a Amazon Web Services (AWS) také testují nasazení 

algoritmu pro šifrování komunikace mezi servery a klientem. Cloudflare již používá 

X25519MLKEM768 pro přenos dat mezi svými servery, a to již ve 33 % případech. Zatím 

však není jasné, zda je tato funkce dostupná pouze pro bezplatné účty nebo i pro všechny 

firemní zákazníky, a zda je šifrování použito pro úplné end-to-end spojení mezi klientem 

a serverem. 

Společnost Meta přidala v květnu 2024 podporu pro X25519MLKEM768 a vlastní 

variantu X25519MLKEM512_FB do své knihovny Fizz. Zatím však není jasné, zda tuto 

podporu využívají na veřejně dostupných službách.[36] 
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Jak už bylo uvedeno dříve, web NÚKIB také nově podporuje hybridní algoritmus 

X25519Kyber768. Tato implementace umožňuje organizacím testovat kvantově odolnou 

kryptografii v reálném prostředí, čímž se potvrzuje, že hybridní přístup je vhodný pro 

přechod na postkvantové šifrovací standardy.[25] 

5.4 Alternativní hybridní algoritmy 

V této podkapitole jsou představeny alternativní hybridní algoritmy, které slouží jako možné 

náhrady za X25519MLKEM768 na odpovídající bezpečnostní úrovni (Level 3). Tyto 

algoritmy kombinují osvědčené klasické kryptografické metody s postkvantovými KEM 

algoritmy, které představují buď schválené standardy NIST, nebo jejich alternativy. Jejich 

zařazení přispívá ke zvýšení rozmanitosti a robustnosti kryptografických systémů při 

přechodu na postkvantové zabezpečení. 

5.4.1 P-384MLKEM768 

Hybridní algoritmus P-384MLKEM768 kombinuje klasickou eliptickou křivku P-384 

a postkvantový algoritmus ML-KEM-768. 

Výkon: P-384MLKEM768 nabízí velmi dobrý výkon, a to jak z hlediska rychlosti 

navazování spojení, tak efektivního využití paměti. Podle studie má pouze mírně vyšší režii 

oproti čistě klasickým řešením. Ve srovnání s X25519MLKEM768 jsou rozdíly v rychlosti 

handshake a velikosti klíčů minimální. 

Kompatibilita: P-384 je standardizovaná eliptická křivka široce podporovaná v mnoha 

systémech. Kombinace s ML-KEM-768 je proto vhodná pro prostředí, kde je kladen důraz 

na standardizované algoritmy a snadnou integraci do existující infrastruktury. 

P-384MLKEM768 je vhodný pro aplikace vyžadující vysokou úroveň bezpečnosti, 

dobrý výkon a kompatibilitu s běžně používanými kryptografickými knihovnami.[37] 

5.4.2 RSA3072-MLKEM768 

Hybridní algoritmus RSA3072-MLKEM768 kombinuje klasický algoritmus RSA s délkou 

klíče 3072 bitů a postkvantový algoritmus ML-KEM-768. 

Výkon: X25519MLKEM768 má obecně nižší výpočetní nároky a menší velikost klíčů 

ve srovnání s RSA3072-MLKEM768. To může vést k rychlejšímu zpracování a menší zátěži 

na síťové přenosy. 
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Kompatibilita: RSA je široce podporován v existující infrastruktuře, což může usnadnit 

integraci RSA3072-MLKEM768 do stávajících systémů. Na druhou stranu X25519 je 

modernější algoritmus, který nabízí lepší výkon, ale nemusí být všude podporován. 

Volba mezi RSA3072-MLKEM768 a X25519MLKEM768 závisí na konkrétních 

požadavcích a omezeních daného prostředí. Pokud je prioritou kompatibilita se stávající 

infrastrukturou, může být vhodnější RSA3072-MLKEM768[38] 

5.4.3 P-384BIKEL3 

Hybridní algoritmus P-384BIKEL3 kombinuje eliptickou křivku P-384 a postkvantový 

algoritmus BIKE na bezpečnostní úrovni L3. 

Výkon: P-384BIKEL3 má vyšší latenci při navazování spojení a větší nároky na paměť 

ve srovnání s P-384MLKEM768 i X25519MLKEM768. Podle výsledků může být 

navazování spojení znatelně pomalejší. 

Kompatibilita: P-384 zajišťuje kompatibilitu s běžnými kryptografickými systémy, 

avšak algoritmus BIKE není zatím tak rozšířený ani standardizovaný jako ML-KEM. 

Výhodou však je, že BIKE nabízí odlišný matematický základ, což zvyšuje diverzitu 

systému. 

P-384BIKEL3 je vhodný tam, kde je preferována rozmanitost kryptografických 

schémat a diverzita bezpečnostních předpokladů před absolutním výkonem.[37] 

5.4.4 P-384HQC192 

Hybridní algoritmus P-384HQC192 kombinuje eliptickou křivku P-384 a postkvantový 

algoritmus HQC-192. 

Výkon: P-384HQC192 má ve srovnání s P-384MLKEM768 i X25519MLKEM768 

vyšší latenci a větší nároky na paměť. Rychlost navazování spojení je pomalejší, což může 

být nevýhodou v prostředích s vysokými nároky na rychlost. 

Kompatibilita: P-384 je běžně podporován, ale algoritmus HQC není zatím 

standardizován ani natolik rozšířený jako ML-KEM. Výhodou však je matematická 

odlišnost, která přispívá k odolnosti systému. 

P-384HQC192 lze využít v případech, kdy je upřednostňována rozmanitost 

postkvantových algoritmů a zvýšená odolnost systému vůči novým typům útoků.[37] 
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6 IMPLEMENTACE X25519MLKEM768 

V této kapitole je představena praktická implementace hybridního kryptografického 

algoritmu X25519MLKEM768. Pro demonstraci reálného případu užití byl zvolen kontext 

zabezpečené komunikace na internetu – konkrétně šifrovací handshake v rámci protokolu 

TLS, který tvoří základ důvěryhodného přenosu dat v protokolu HTTPS. Vzhledem k tomu, 

že právě v tomto prostředí se hybridní algoritmy navrhují a testují jako náhrada stávajících 

mechanismů ohrožených kvantovým výpočetním výkonem, představuje tento scénář ideální 

příklad pro demonstraci. 

V rámci této kapitoly je popsán návrh zjednodušeného TLS-like handshaku 

využívajícího algoritmus X25519MLKEM768, jeho implementace a testování, a to bez 

nutnosti nasazení na reálný server. Simulace probíhá v lokálním prostředí, což umožňuje 

detailní sledování a pochopení jednotlivých kroků výměny klíčů a generování společného 

tajemství. 

Celá implementace je realizována v programovacím jazyce Python, a to s důrazem na 

srozumitelnost, přehlednost a snadnou testovatelnost jednotlivých komponent hybridního 

šifrovacího mechanismu. 

6.1 Implementace klasické výměny klíčů – X22519 

Při implementaci algoritmu X25519, který v rámci protokolu slouží pro klasickou výměnu 

klíčů, bylo vycházeno z výukového dokumentu Implementing Curve25519/X25519: 

A Tutorial on Elliptic Curve Cryptography od Martina Kleppmanna. V uvedeném materiálu 

je podrobně popsán matematický základ a konstrukce algoritmu pomocí Montgomery 

ladder, včetně bezpečnostních aspektů, jako je výpočet v konstantním čase funkce – cswap() 

a úprava skaláru, funkce clamping().[39] 

Implementace algoritmu X25519, jež se nachází v souboru x25519.py, byla rozdělena 

do několika samostatných funkcí, které odpovídají jednotlivým matematickým operacím 

potřebným pro výpočet skalárního násobení na křivce Curve25519. 
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6.1.1 Aritmetické operace 

V této podkapitole jsou popsány základní matematické operace, které jsou využívány při 

výpočtech na eliptické křivce Curve25519. Veškeré operace probíhají v konečném tělese Fp, 

kde p je prvočíslo definující velikost pole. 

𝑝 = 2255 − 19 

Zvolené prvočíslo umožňuje efektivní výpočty na 64bitových procesorech, jelikož 

hodnoty menší než 2255 se vejdou do čtyř registrů. Jeho tvar 2n – c zároveň zjednodušuje 

redukci modulo p, což zvyšuje rychlost výpočtů. Pole Fp zároveň poskytuje bezpečnost 

odpovídající přibližně 128 bitům. 

Pro práci v tomto tělese byly implementovány základní aritmetické operace: sčítání, 

odčítání, násobení a výpočet inverzního prvku. Tyto funkce tvoří nezbytný základ pro 

následné výpočty v hlavní funkci x25519(), kde jsou využívány v každém kroku algoritmu 

Montgomery ladder. 

6.1.2 Pomocné bezpečnostní funkce 

Kromě základních aritmetických operací obsahuje implementace také dvě klíčové pomocné 

funkce, které zajišťují bezpečnost algoritmu X25519 vůči specifickým třídám útoků. 

Konkrétně se jedná o funkce clamp_scalar() a cswap(). 

Funkce clamp_scalar() upravuje vstupní privátní klíč – skalár do bezpečné podoby, jak 

je předepsáno ve specifikaci RFC 7748. Nejprve je vstup převeden z neměnitelného typu 

bytes na typ bytearray, který umožňuje manipulaci s jednotlivými bajty. Poté dochází 

k nastavení konkrétních bitů na požadované hodnoty: dolní tři bity jsou vynulovány, nejvyšší 

bit je vynulován a druhý nejvyšší bit je nastaven na 1. Tím se zaručí, že výsledný skalar je 

násobkem osmi, není příliš malý ani příliš blízko horní hranici tělesa, což zajišťuje bezpečné 

vlastnosti výsledného klíče. 

Funkce cswap() provádí podmíněné prohození dvou hodnot bez použití větvení, čímž 

zajišťuje konstantní čas výpočtu. To zabraňuje útokům založeným na časování. Místo 

podmínky if používá bitové operace XOR a AND, které zaručují stejný průběh výpočtu pro 

všechny vstupy. Tato funkce je klíčová při práci s Montgomery ladder, kde se pravidelně 

rozhoduje, zda body mezi sebou prohodit. 
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6.1.3 Hlavní X25519 funkce 

Funkce x25519() představuje hlavní výpočetní část algoritmu a slouží k provedení 

skalárního násobení na eliptické křivce Curve25519. Vstupem je privátní klíč ve formátu 32 

bajtů a u-souřadnice vstupního bodu (standardně hodnota 9). Výstupem je u-souřadnice 

výsledného bodu, která slouží jako veřejný klíč nebo sdílené tajemství. 

Výpočet probíhá pomocí algoritmu Montgomery ladder, který umožňuje efektivní 

a bezpečné násobení bodu skalárem bez použití souřadnice y. Funkce využívá pomocné 

operace jako add(), subtract(), multiply(), inverse(), cswap() a clamp_scalar() a provádí 

celkem 255 iterací odpovídajících jednotlivým bitům vstupního skalaru. Iterace probíhá od 

nejvyššího bitu směrem k nejnižšímu, což odpovídá způsobu zpracování skalárního součinu 

ve specifikaci RFC 7748. 

Funkce x25519() tak představuje jádro celé implementace. Využívá optimalizovaný 

výpočet pomocí Montgomery ladder. Díky použití pouze x-souřadnic a konstantního 

časování operací je zajištěna vysoká výpočetní efektivita i odolnost proti běžným typům 

postranních útoků. Výstupem této funkce je buď veřejný klíč, nebo sdílené tajemství mezi 

dvěma stranami komunikace. 

6.1.4 Generování klíčového páru 

Funkce generate_keypair() slouží k vygenerování dvojice klíčů potřebných pro výměnu 

klíčů pomocí algoritmu X25519. Konkrétně se jedná o privátní klíč (skalár) a odpovídající 

veřejný klíč, který je získán jeho skalárním násobením se standardním výchozím bodem 

křivky (u = 9). 

Nejprve je náhodně vygenerováno 32 bajtů pomocí funkce os.urandom(), která 

poskytuje kryptograficky bezpečné náhodné hodnoty. Tento vstup je následně v rámci 

funkce x25519() upraven pomocí tzv. clamping operace, čímž vznikne skutečný privátní 

klíč. Následně je tímto klíčem provedeno skalární násobení se základním bodem křivky za 

účelem výpočtu veřejného klíče. Výsledný veřejný klíč je nakonec převeden do pole bajtů 

ve formátu little-endian, jak vyžaduje specifikace algoritmu X25519. 

6.1.5 Výpočet sdíleného tajemství 

Funkce compute_shared_secret() slouží k výpočtu sdíleného tajemství mezi dvěma stranami 

na základě jejich klíčových párů. Tento krok odpovídá závěrečné fázi výměny klíčů dle 

principu Diffie-Hellmanova protokolu – každá strana využívá svůj privátní klíč a veřejný 
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klíč protistrany k výpočtu stejného tajného klíče, aniž by došlo k jeho přímému přenosu. 

Funkce jako vstup očekává vlastní privátní klíč ve formátu 32 bajtů a veřejný klíč 

protistrany, rovněž ve formátu 32 bajtů v little-endian reprezentaci. 

Veřejný klíč je převeden na celé číslo a použit jako vstupní bod u pro funkci x25519(), 

kde se provede skalární násobení s vlastním privátním klíčem. Výsledkem je sdílené 

tajemství, které je opět převedeno do formátu 32 bajtů v little-endian reprezentaci. Toto 

sdílené tajemství je identické pro obě komunikující strany, pokud použijí odpovídající klíče. 

6.2 Implementace postkvantové výměny klíčů – MLKEM768 

V rámci implementace kvantově odolného algoritmu bude realizována jeho nejaktuálnější 

standardizovaná verze ML-KEM-768. Předloha implementace vychází přímo z oficiálního 

dokumentu vydaného organizací NIST, ve kterém jsou detailně popsány všechny potřebné 

parametry a funkce algoritmu. 

6.2.1 Kryptografické primitiva 

Kryptografická primitiva definovaná ve FIPS 203 v sekci 4.1 jsou v této práci 

implementována v souboru crypto_primitives.py a staví na standardních funkcích SHA-3 

a SHAKE, které využívají modul hashlib jazyka Python. 

Funkce PRF() je pseudonáhodná funkce založená na SHAKE256. Generuje 

deterministicky pseudonáhodná data pevně dané délky ze vstupní počáteční hodnoty 

s a čítače b. V ML-KEM slouží zejména k deterministickému odvození šumových vektorů. 

Funkce H() představuje standardní hashovací funkci SHA3-256 vracející 32bajtový 

hash vstupu s. Používá se například pro hashování veřejného (zapouzdřujícího) klíče, jehož 

hash je součástí soukromého (odpouzdřujícího) klíče. 

Funkce J() poskytuje 32bajtový hash pomocí SHAKE256. Využívá se při implicitním 

odmítnutí v procesu odpouzdření k výpočtu alternativního sdíleného klíče. 

Funkce G() získává dva nezávislé 32bajtové výstupy rozdělením 64bajtového hashe 

SHA3-512 vstupu c. Slouží jako funkce pro odvození klíče například pro derivaci interních 

počátečních hodnot ρ a σ nebo sdíleného klíče K a náhodnosti r. 



UTB ve Zlíně, Fakulta aplikované informatiky 65 

 

6.2.2 Implementace pomocných algoritmů 

V sekci 4.2 standardu je definována sada obecných pomocných obecných algoritmů, které 

slouží jako základní stavební bloky pro hlavní funkce ML-KEM. Tyto algoritmy, 

implementované v souboru utils.py, zajišťují konverze datových typů, kompresi dat 

a pseudonáhodné vzorkování. Jejich korektní implementace, popsaná níže, je klíčová pro 

správnou funkci a bezpečnost celého mechanismu. 

Pro převod mezi bajtovými řetězci a poli bitů byly implementovány funkce 

BytesToBits() a BitsToBytes(). Dle specifikace FIPS 203 je použita konvence little-endian, 

kdy nejméně významný bit bajtu odpovídá bitu na nejnižším indexu. 

Pro ztrátovou kompresi koeficientů polynomů slouží funkce Compress() 

a Decompress(). Funkce Compress() převede celé číslo x na přibližnou hodnotu s menším 

počtem bitů d. Funkce Decompress() provádí přibližnou rekonstrukci původní hodnoty 

z d-bitového komprimovaného čísla y. Obě funkce využívají definovaný způsob 

zaokrouhlování implementovaný pomocí celočíselné aritmetiky. Jejich účelem je snížit 

velikost přenášených dat v šifrovaném textu. 

Funkce ByteEncode() a ByteDecode() zajišťují převod mezi polem N=256 d-bitových 

celých čísel, která reprezentují koeficienty, a odpovídajícím bajtovým řetězcem. Funkce 

ByteEncode() prochází vstupní pole koeficientů a pro každý z nich postupně extrahuje jeho 

d bitů, počínaje nejméně významným. Všechny získané bity z celého pole jsou poté spojeny 

a převedeny na výsledný bajtový řetězec. Funkce ByteDecode() provádí inverzní 

operaci: nejprve převede vstupní bajtový řetězec na sekvenci bitů a následně pro každou 

skupinu d bitů zrekonstruuje odpovídající celé číslo. 

Funkce SampleNTT(), implementována v souboru sampling.py, generuje 

pseudonáhodné koeficienty polynomu přímo v NTT doméně. Na základě vstupního 

32bajtové vstupní hodnoty ρ a dvou indexů i, j využívá SHAKE-128 k produkci proudu 

kandidátních hodnot pro koeficienty. Tyto hodnoty jsou akceptovány pouze pokud jsou 

menší než modul Q. Tento proces odmítacího vzorkování se opakuje, dokud není získáno 

všech N koeficientů, které se typicky používají pro deterministické generování matice A. 

Funkce SamplePolyCBD(), rovněž umístěná v souboru sampling.py, vytváří speciální 

šumové polynomy. Tyto polynomy se skládají z čísel, která jsou záměrně malá. Funkce 

k tomu používá vstupní data B a parametr η. Tento parametr η určuje, jak malá výsledná 
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čísla v polynomu mají být. Výsledkem je tedy seznam čísel, který se v algoritmu ML-KEM 

používá jako tajný nebo šumový prvek. 

6.2.3 Implementace NTT a polynomiálního násobení 

Klíčovou součástí algoritmu ML-KEM pro dosažení potřebné efektivity je využití NTT, jak 

je definováno ve standardu v sekci 4.3 a implementováno v souboru ntt.py. Přímé násobení 

polynomů by bylo výpočetně náročné proto NTT umožňuje převést polynomy do NTT 

domény, kde lze jejich součin spočítat výrazně rychleji pomocí násobení po jednotlivých 

složkách, s využitím specializovaných operací. 

Funkce NTT() a InvNTT() realizují Číselně Teoretickou Transformaci a její inverzi 

standardu FIPS 203. Tyto transformace jsou výpočetně efektivní variantou Diskrétní 

Fourierovy Transformace přizpůsobenou pro operace v konečném tělese – modulo Q a tvoří 

základ pro rychlé násobení polynomů. Pro dosažení efektivity využívají Cooley-Tukey 

algoritmus, jehož klíčovou součástí jsou předpočítané faktory, jejichž hodnoty jsou uvedeny 

v dodatku A standardu a v této implementaci uloženy v konstantě ZETAS_BITREV, které se 

přímo používají v motýlkových operacích obou algoritmů. Funkce NTT() transformuje 

polynom ze standardní koeficientové reprezentace do NTT domény s bitově převráceným 

uspořádáním koeficientů. Funkce InvNTT() provádí inverzní proces a zahrnuje finální 

škálování předpočítaným faktorem. 

Funkce MultiplyNTTs() slouží k násobení dvou polynomů, které jsou již v NTT 

doméně. V NTT doméně se násobení provádí efektivně po jednotlivých složkách. Tato 

funkce tedy prochází všech 128 komponent a pro každou komponentu volá funkci 

BaseCaseMultiply(), která provede samotné násobení pro danou komponentu. Výsledkem 

je nové pole 256 koeficientů, které představuje součin obou vstupních polynomů v NTT 

doméně. 

Funkce BaseCaseMultiply() je podprogramem pro MultiplyNTTs() a provádí základní 

násobení pro jednu komponentu. Na vstupu dostává koeficienty dvou prvků a konstantu 

gama specifickou pro danou komponentu. Konstanta γ je jednou z hodnot předpočítaných 

podle Dodatku A standardu a je již uložena v konstantách implementace. Funkce pak podle 

definovaných algebraických pravidel vypočítá dva koeficienty výsledného součinu, přičemž 

všechny operace probíhají modulo Q. 
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6.2.4 Implementace schématu K-PKE 

Tato kapitola popisuje implementaci schématu K-PKE, které tvoří základní komponentu pro 

mechanismus zapouzdření klíče ML-KEM, jak je definováno ve standardu FIPS 203, 

konkrétně v sekci 5. Implementace algoritmů K-PKE je realizována v souboru pke.py, 

přičemž všechny specifické parametry pro danou bezpečnostní úroveň jsou pro přehlednost 

definovány v souboru constants.py. Je důležité zdůraznit, že K-PKE není navrženo pro 

samostatné nasazení jako šifrovací schéma, ale slouží výhradně jako sada podprogramů, 

které využívají hlavní algoritmy ML-KEM. Tyto algoritmy K-PKE pracují s parametry, 

které jsou dány zvolenou bezpečnostní úrovní ML-KEM – v případě této implementace se 

jedná o bezpečnostní úroveň 3. 

Prvním algoritmem schématu K-PKE je generování klíčů, implementované funkcí 

K_PKE_KeyGen(). Tato funkce má za úkol vygenerovat na základě vstupní 32bajtové 

náhodnosti d dvojici klíčů: veřejný šifrovací klíč ekPKE a soukromý dešifrovací klíč dkPKE. 

Veřejný klíč ekPKE bude později použit jako zapouzdřovací klíč v ML-KEM, zatímco 

dkPKE zůstává soukromý a slouží odpouzdření. 

Funkce K_PKE_KeyGen() nejprve ze vstupní náhodnosti d odvodí pomocí G vstupní 

hodnoty ρ a σ. Počáteční hodnota ρ slouží k vygenerování matice A v NTT doméně, kde je 

využita pomocná funkce generate_matrix(). Z počáteční hodnoty σ se pak pomocí PRF 

a SamplePolyCBD() vygenerují tajný vektor s a šumový vektor e, které jsou obratem 

převedeny funkcí NTT() do NTT reprezentace. Následně se vypočítá vektor t̂ pomocí 

rovnice 

𝑡̂ = 𝐴̂𝑠̂ +  𝑒̂ 

Kde násobení a sčítání probíhá efektivně v NTT doméně. Nakonec se pomocí funkce 

ByteEncode() zakóduje t̂ a připojí ρ pro vytvoření veřejného klíče ekPKE, a zakóduje s pro 

vytvoření soukromého klíče dkPKE. 

Funkce K_PKE_Encrypt() implementuje K-PKE šifrování. Přijme veřejný klíč ekPKE, 

zprávu m a náhodnost r a vytvoří zašifrovaný text c. Nejprve z klíče ekPKE získá potřebný 

vektor t̂ a počáteční hodnot ρ. Hodnotu ρ použije pomocná funkce generate_matrix() 

k regeneraci matic A v NTT doméně. Z náhodnosti r se pak pomocí PRF() 

a SamplePolyCBD() odvodí vektory y, e1 a polynom e2. Vektor y je převeden do NTT 

domény. Poté se pomocí y, matice A, vektoru t̂ a šumových složek e1, e2 vypočítají vektory 

u a v. Do výpočtu v je také zakomponována zpráva m. Tyto výpočty zahrnují operace v NTT 
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doméně a zpětnou transformaci InvNTT. Výsledné vektory u a v jsou pak komprimovány 

pomoci funkce Compress() a spojeny do zašifrovaného textu c. 

Funkce K_PKE_Decrypt() implementuje K-PKE dešifrování. Přijme soukromý klíč 

dkPKE a šifrovaný text c a vrátí původní zprávu m. Nejprve z šifrovaného textu c extrahuje 

a dekomprimuje pomocí funkcí ByteDecode() a Decompress() vektory u' a v'. Z klíče dkPKE 

dekóduje tajný klíč s. Následně vypočítá rozdílový polynom w: zkombinuje tajný klíč 

s s vektorem u' a výsledek odečte od v'. Tento výpočet využívá operace v NTT doméně 

a odečtení díky pomocné funkci _poly_sub(). Z výsledného polynomu w je nakonec pomocí 

Compress() a ByteEncode() získána původní zpráva m. 

6.2.5 Implementace interních algoritmů 

Tato kapitola se zaměřuje na implementaci interních algoritmů ML-KEM, specifikovaných 

v sekci 6 standardu FIPS 203 které jsou v této práci realizovány v souboru kem_internal.py. 

Tyto funkce představují základní stavební bloky hlavních ML-KEM operací a jejich 

klíčovou charakteristikou je deterministická povaha: negenerují žádnou vlastní náhodnost 

a jejich výstup je plně určen vstupy. Popisovaná implementace těchto algoritmů staví na 

dříve definovaných kryptografických primitivech, pomocných funkcích a schématu K-PKE 

a její korektnost je zásadní pro správnou funkci celého ML-KEM. 

Funkce MLKEM768_KeyGen_internal() implementuje deterministické jádro 

generování klíčů pro ML-KEM. Na vstupu přijímá dvě 32bajtové náhodnosti, označované 

jako d a z, a vrací výsledný pár klíčů: zapouzdřující klíč ek a odpouzdřující klíč dk. Hlavním 

krokem funkce je zavolání již popsané funkce K_PKE_KeyGen s náhodností d, čímž se 

získá základní dvojice veřejného ekPKE a soukromého dkPKE klíče pro schéma K-PKE. 

Finální zapouzdřující klíč ML-KEM – ek je pak přímo roven veřejnému klíči K-PKE. 

Odpouzdřující klíč ML-KEM – dk je následně sestaven zřetězením čtyř částí: soukromého 

klíče K-PKE, veřejného klíče K-PKE, hashe veřejného klíče a druhé vstupní náhodnosti z. 

Funkce také obsahuje kontroly správné délky vstupních počáteční hodnoty d a z. 

Funkce MLKEM768_Encaps_internal() implementuje deterministické jádro 

zapouzdření klíče pro ML-KEM. Na vstupu přijímá zapouzdřující klíč ek a 32bajtovou 

náhodnost m a vrací výsledný pár: 32bajtový sdílený tajný klíč K šifrovaný text c. Nejprve 

pomocí kryptografické funkce G() odvodí jak výsledný sdílený klíč K, tak interní 32bajtovou 

náhodnost r, která bude použita pro K-PKE šifrování. Vstupem pro funkci G() je přitom 

zřetězení vstupní náhodnosti m a hashe zapouzdřujícího klíče ek, který je vypočítán pomocí 
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funkce H(). Následně funkce zavolá již popsanou funkci K_PKE_Encrypt() se 

zapouzdřujícím klíčem ek, zprávou m a odvozenou náhodností r, čímž získá šifrovaný text 

c. Nakonec vrátí dvojici K a c. Implementace obsahuje také kontrolu správné délky vstupní 

náhodnosti m. 

Funkce MLKEM768_Decaps_internal() implementuje deterministické jádro 

odpouzdření klíče. Na vstupu přijímá odpouzdřující klíč dk a šifrovaný text c a vrací 

výsledný 32bajtový sdílený klíč K. Funkce nejprve rozparsuje odpouzdřující klíč dk na jeho 

jednotlivé součásti: soukromý klíč dkPKE, veřejný klíč ekPKE, hash veřejného klíče 

h a hodnotu z pro implicitní zamítnutí. Poté pomocí K_PKE_Decrypt() dešifruje šifrovaný 

text c, čímž získá kandidáta na původní zprávu m'. Následně z m' a hashe h odvodí pomocí 

funkce G() kandidáta na sdílený klíč K' a náhodnost r' pro opětovné zapouzdření. Také 

vypočítá alternativní klíč K̄ pro případ implicitního zamítnutí pomocí funkce J(). Poté 

provede kontrolní opětovné zapouzdření zprávy m' pomocí K_PKE_Encrypt() a získá 

rekonstruovaný šifrovaný text c'. Nakonec porovná pomocí pomocné funkce 

constant_time_compare() v konstantním čase původní šifrovaný text c s rekonstruovaným 

c'. Pokud se neshodují, nahradí kandidátní klíč K' alternativním klíčem K̄. Vrácenou 

hodnotou je finální sdílený klíč K'. 

6.2.6 Hlavní algoritmy ML-KEM  

Tato podkapitola popisuje tři hlavní algoritmy mechanismu ML-KEM, jejichž implementace 

je realizována v souboru mlkem768.py. Tyto funkce představují finální vnější rozhraní 

celého schématu, které je určeno pro koncové použití. Jak bylo naznačeno dříve, tyto hlavní 

algoritmy volají příslušné interní funkce pro provedení samotných kryptografických operací. 

Navíc oproti interním funkcím zajišťují generování potřebné náhodnosti a provádějí 

nezbytné kontroly vstupních parametrů, jak vyžaduje standard FIPS 203. Protože jádro 

výpočtů již bylo rozebráno v předchozích částech, následující popisy se zaměří především 

na tyto dodatečné kroky a celkové propojení. 

Funkce MLKEM768_KeyGen() představuje hlavní rozhraní pro generování klíčů. Tato 

funkce nepřijímá žádné vstupní argumenty, ale sama interně generuje potřebnou náhodnost 

pomocí kryptograficky bezpečného generátoru náhodných čísel. Konkrétně vygeneruje dvě 

32bajtové náhodné hodnoty d a z. Tyto hodnoty poté předá jako vstup interní funkci 

MLKEM768_KeyGen_internal(), která provede veškeré kryptografické výpočty a vrátí 

dvojici klíčů. Funkce MLKEM768_KeyGen() pak tuto dvojici klíčů ek a dk pouze vrátí jako 
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svůj výsledek. Implementace zahrnuje také základní ošetření případných chyb při 

generování náhodnosti. 

Funkce MLKEM768_Encaps() představuje hlavní rozhraní pro zapouzdření klíče 

ML-KEM. Na vstupu přijímá pouze veřejný zapouzdřující klíč ek a jejím výstupem je 

dvojice: 32bajtový sdílený tajný klíč K a šifrovaný text c. Než dojde k samotnému 

zapouzdření, funkce nejprve provede validaci vstupního klíče ek pomocí pomocné funkce 

_validate_encapsulation_key(). Tato validace ověřuje správnou délku klíče a také 

kontroluje, zda je klíč správně zakódován podle pravidel standardu. Pokud klíč validací 

neprojde, funkce selže. V opačném případě interně vygeneruje 32bajtovou kryptograficky 

bezpečnou náhodnost m. Tuto náhodnost m spolu s validovaným klíčem ek následně předá 

interní funkci MLKEM768_Encaps_internal(), která provede jádro kryptografických 

výpočtů. Funkce MLKEM768_Encaps pak pouze vrátí výsledný pár K – sdílené tajemství, 

c – zašifrovaný text. 

Funkce MLKEM768_Decaps() představuje hlavní rozhraní pro odpouzdření klíče. Na 

vstupu přijímá soukromý odpouzdřující klíč dk a šifrovaný text c a jejím výstupem je 

výsledný 32bajtový sdílený tajný klíč K. Než dojde k samotnému odpouzdření, funkce 

nejprve provede validaci vstupů dk a c pomocí pomocné funkce _validate_decaps_inputs(). 

Tato validace ověřuje, zda mají dk a c správné očekávané délky pro danou bezpečnostní 

úroveň a také kontroluje vnitřní konzistenci klíče dk pomocí uloženého hashe. Pokud vstupy 

validací neprojdou, funkce selže. V opačném případě předá validované vstupy dk a c interní 

funkci MLKEM768_Decaps_internal(), která provede jádro opouzdřujícího výpočtu včetně 

mechanismu implicitního zamítnutí. Funkce MLKEM768_Decaps() pak pouze vrátí 

výsledný sdílené tajemství K získaný z interní funkce. 

6.3 Návrh TLS-like protokolu 

Pro ukázku reálné implementace vlastní verze hybridního algoritmu X25519MLKEM768 

byl navržen a realizován protokol inspirovaný standardem TLS, který se běžně používá pro 

zabezpečenou komunikaci na internetu, například v rámci protokolu HTTPS. V souboru 

tls_core.py je kombinován klasický přístup založený na eliptických křivkách X25519 

s postkvantovým algoritmem ML-KEM768, a to za účelem výpočtu sdíleného tajemství 

mezi klientem a serverem. Princip fungování této výměny odpovídá popisu uvedenému 

v kapitole 5.2. 
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Pomocí funkce client_create_hello() klient inicializuje navázání spojení se serverem. 

Během této operace jsou vytvořeny tři páry klíčů – dvojice pro hybridní výměnu a jeden 

záložní pár pro klasickou výměnu pomocí X25519. Výsledná zpráva ClientHello obsahuje 

náhodně generované ID relace, seznam podporovaných skupin pro výměnu klíčů – klasický 

nebo hybridní přístup a dvojici sdílených klíčových hodnot. Prvním z nich je zřetězený 

veřejný klíč X25519 a ML-KEM768 určený pro hybridní výměnu, druhým samostatný 

veřejný klíč X25519 pro případ, že server hybridní režim nepodporuje. 

Funkce server_process_hello() zajišťuje zpracování zprávy ClientHello, kterou server 

obdrží od klienta. Nejprve proběhne výběr jedné ze skupin pro výměnu klíčů, které obě 

strany podporují. Pokud je zvolen hybridní přístup X25519MLKEM768, server extrahuje 

z kombinovaného sdíleného klíče veřejný klíč ML-KEM768 a veřejný klíč X25519. Na 

základě těchto údajů vygeneruje svůj vlastní pár klíčů X25519 a následně provede výpočet 

dvou dílčích tajemství – jedno pomocí X25519 a druhé pomocí zapouzdření KEM. Oba 

výsledky jsou zřetězeny a následně zpracovány funkcí HKDF za účelem získání finálního 

sdíleného tajemství. Server poté vytvoří odpověď ServerHello, která obsahuje vybranou 

skupinu, výsledné sdílené tajemství a zřetězený sdílený klíč tvořený jeho veřejným klíčem 

X25519 a šifrovaným textem vzniklým při zapouzdření KEM. Pokud je místo hybridní 

skupiny vybrána pouze klasická skupina X25519, server provede standardní výměnu klíčů 

pomocí ECDH a odpověď obsahuje pouze veřejný klíč X25519 a výsledné tajemství. 

Funkce client_process_server_hello() zpracovává odpověď serveru a na straně klienta 

dopočítává finální sdílené tajemství. V případě hybridní výměny klient rozdělí přijatý 

zřetězený sdílený klíč na dvě části: veřejný klíč serveru X25519 a šifrovaný text získaný 

zapouzdřením postkvantového klíče ML-KEM768. Klient nejprve spočítá sdílené tajemství 

pomocí algoritmu X25519, následně pomocí funkce decapsulate() získá druhou část 

tajemství z šifrovaného textu a svého soukromého ML-KEM768 klíče. Obě hodnoty spojí 

a vstupem do funkce HKDF() získá finální sdílený klíč. V případě klasického režimu 

X25519 proběhne pouze výpočet sdíleného tajemství metodou ECDH() s použitím klientova 

soukromého a server veřejného klíče. 

6.4 Implementace protokolu 

V této kapitole je popsána praktická implementace navrženého TLS-like protokolu, který 

využívá hybridní algoritmus nebo klasický algoritmus pro bezpečnou výměnu klíčů mezi 

klientem a serverem. Základní funkcionalita výměny klíčů je soustředěna v modulu 
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tls_core.py, zatímco samotné navázání síťového spojení, výměna zpráv a šifrování 

komunikace probíhá ve skriptech client.py a server.py. Obě strany navazují spojení 

prostřednictvím TCP socketů a využívají algoritmus AES-GCM (Galois/Counter Mode) pro 

šifrování a autentizaci zpráv. 

Soubor client.py tvoří klientskou část TLS-like protokolu a slouží k navázání 

šifrovaného spojení se serverem. Implementace využívá standardní knihovnu jazyka Python 

pro práci se síťovými sockety (socket) a pro výměnu data ve formátu JavaScript Object 

Notation (JSON). Díky těmto knihovnám je možné přenášet strukturované zprávy mezi 

klientem a serverem přes TCP spojení. 

Na začátku skriptu je definována Internet Protocol (IP) adresa a port serveru, 

ke kterému se klient připojuje. V rámci lokálního testování je IP adresa nastavena na 

127.0.0.1 (localhost) a port na hodnotu 4443. Tato konfigurace zajišťuje, že komunikace 

probíhá výhradně lokálně na daném zařízení a je určena pro účely testování. 

Klient po spuštění naváže síťové spojení se serverem a inicializuje výměnu klíčů 

pomocí funkce client_create_hello() z modulu tls_core.py. Tato funkce vytvoří potřebné 

klíčové páry a připraví zprávu ClientHello, která obsahuje informace o podporovaných 

kryptografických skupinách a veřejných klíčích klienta. Tato zpráva je serializována do 

formátu JSON a odeslána serveru. 

Následně klient přijme odpověď ServerHello, kterou zpracuje pomocí funkce 

client_process_server_hello() ze stejného modulu. Tato funkce na základě zvolené 

kryptografické skupiny vypočítá sdílené tajemství, které je následně použito jako klíč pro 

šifrování zpráv. 

Po úspěšném navázání spojení klient nejprve přijme šifrovanou zprávu od serveru 

a dešifruje ji pomocí algoritmu AES-GCM. Tento úvodní příjem zprávy slouží jako testovací 

krok pro ověření, že sdílené tajemství bylo správně vypočítáno a že následná symetrická 

šifrovací komunikace funguje. Pro šifrování a dešifrování zpráv je využita knihovna 

cryptography, která v jazyce Python poskytuje rozhraní pro bezpečné symetrické šifrování. 

Následuje interaktivní režim, ve kterém uživatel klienta může prostřednictvím konzole 

zadávat vlastní textové zprávy. Tyto zprávy jsou šifrovány, odeslány serveru, a následně je 

očekávána odpověď. Komunikace probíhá v režimu simplexního střídání – vždy je odeslána 

jedna zpráva a klient musí nejprve obdržet odpověď od serveru, než může pokračovat 

v dalším odesílání. 
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Soubor server.py tvoří druhou polovinu protokolu a zajišťuje serverovou stranu 

šifrované komunikace. Stejně jako klientská část využívá standardní knihovnu socket pro 

práci s TCP sockety a knihovnu json pro serializaci dat. Server naslouchá na zvoleném portu, 

ve výchozím nastavení 4443, a čeká na navázání spojení klientem. 

Po přijetí spojení server obdrží zprávu ClientHello, kterou zpracuje pomocí funkce 

server_process_hello() z modulu tls_core.py. Tato funkce zvolí odpovídající 

kryptografickou skupinu, extrahuje veřejné klíče z přijatého sdíleného klíče a následně 

provede výpočet sdíleného tajemství. Při použití hybridního algoritmu je sdílený klíč 

rozdělen na veřejný klíč ML-KEM768 a veřejný klíč X25519, přičemž server provede 

zapouzdření KEM a výpočet X25519. Obě hodnoty jsou spojeny a zpracovány pomocí 

HKDF. 

Po vytvoření odpovědi ServerHello je tato zpráva serializována a odeslána klientovi. 

Server následně odešle testovací šifrovanou zprávu, která slouží k ověření, že klient je 

schopen správně dešifrovat zprávu pomocí sdíleného tajemství. Pro šifrování zpráv server 

rovněž využívá algoritmus AES-GCM prostřednictvím knihovny cryptography. 

Po odeslání úvodní zprávy vstupuje server do interaktivního režimu. V tomto režimu 

přijímá od klienta šifrované zprávy, které dešifruje a vypisuje na konzoli. Uživatel na straně 

serveru může následně zadat odpověď, která je zašifrována a odeslána zpět klientovi. 

Komunikace probíhá střídavě, jak již bylo uvedeno v části popisující chování klienta. 

6.5 Uživatelské rozhraní 

Pro účely lepší demonstrace a ověření výsledků byl vytvořen grafické uživatelský rozhraní 

(GUI) samostatně pro serverovou (gui_server.py) i klientskou část (gui_client.py) aplikace. 

Obě rozhraní slouží jako jednoduché demo, které umožňuje snadnější ovládání a vizualizaci 

základních funkcí navrženého systému. K realizaci GUI byla použita knihovna 

customtkinter, která oproti klasické verzi knihovny tkinter umožňuje snadnější úpravu 

vzhledu, lepší možnosti stylování a modernější grafické prvky. Princip ovládání a celková 

logika aplikace zůstávají obdobné jako v původní konzolové verzi. 

Při spuštění aplikace si uživatel nejprve zvolí požadovaný režim komunikace. 

K dispozici je buď hybridní režim, kdy jsou zprávy šifrovány kombinací algoritmů X25519 

a ML-KEM768, nebo klasický režim využívající pouze X25519 (Obrázek 9 a Obrázek 10). 
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Zvolený režim ovlivňuje průběh navázání spojení i způsob šifrování následné komunikace 

mezi klientem a serverem. 

 

Obrázek 9 Výběr režimu komunikace v klientské 

aplikaci 

(zdroj: vlastní) 

 

Obrázek 10 Výběr režimu komunikace v 

serverové aplikaci 

(zdroj: vlastní) 

Po výběru režimu komunikace je automaticky navázáno spojení mezi serverovou 

a klientskou aplikací. Uživatelské rozhraní je rozděleno do dvou hlavních sekcí – Chat 

a Informace. V záložce Informace (Obrázek 11 a Obrázek 12) je zobrazen zvolený režim 
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(hybridní nebo klasický), včetně konkrétního algoritmu, který aplikace podporuje, buď 

hybridní X25519MLKEM768, nebo klasický X25519. V případě zvoleného hybridního 

režimu aplikace zároveň podporuje i čistě klasický režim X25519 pro situace, kdy druhá 

strana hybridní výměnu klíčů nepodporuje. Po úspěšném navázání spojení je zde také 

vypsáno vypočítané sdílené tajemství, což umožňuje ověřit, že server i klient disponují 

totožným klíčem. Pod touto hodnotou jsou zobrazeny údaje o objemu odeslaných a přijatých 

dat během fáze navazování spojení. Podrobnější analýza rozdílů v datové režii při 

navazování spojení je uvedena v kapitole č.7.3 Testování protokolu. 

 

Obrázek 11 Záložka Informace v klientské aplikaci 

(zdroj: vlastní) 
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Obrázek 12 Záložka Informace v serverové aplikaci 

(zdroj: vlastní) 

V záložce Chat klientské aplikace (Obrázek 13) jsou zobrazovány všechny důležité 

informace týkající se navazování spojení a průběhu komunikace se serverem. Uživatel zde 

vidí IP adresu a port serveru, ke kterému se připojuje, zprávu o odeslání ClientHello, 

následné přijetí ServerHello a potvrzení, že sdílené tajemství bylo úspěšně vypočteno. Tyto 

záznamy umožňují jednoduše ověřit správný průběh celého kryptografického procesu 

i samotného spojení. Po úspěšném navázání spojení tato záložka nejen zobrazuje všechny 

odesílané i přijímané zprávy v rámci zašifrované komunikace, ale zároveň umožňuje 

uživateli přímo odesílat nové zprávy a aktivně tak komunikovat se serverem. 
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Obrázek 13 Záložka Chat v klientské aplikaci 

(zdroj: vlastní) 

V serverové části aplikace jsou v záložce Chat (Obrázek 14) postupně zaznamenávány 

události od naslouchání na zvoleném portu, přes informaci o připojení klienta a jeho IP 

adrese, přijetí zprávy ClientHello, výpočet sdíleného tajemství až po odeslání ServerHello. 

Záložka umožňuje také přehledně sledovat celou historii komunikace a po úspěšném 

navázání spojení nejen zobrazuje všechny zprávy v rámci zašifrované komunikace mezi 

klientem a serverem, ale zároveň umožňuje uživateli přímo odesílat nové zprávy a aktivně 

tak komunikovat s protistranou. 
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Obrázek 14 Záložka Chat v serverové aplikaci 

(zdroj: vlastní) 

Grafické uživatelské rozhraní významně usnadnilo ověření správné funkce 

implementovaných algoritmů a umožnilo názorně demonstrovat šifrovanou komunikaci 

mezi klientem a serverem. Díky rozdělení na část Chat a Informace bylo možné jednoduše 

sledovat klíčové operace i přenosy dat během spojení. GUI tak efektivně podpořilo testování 

a prezentaci výsledků práce. 

6.6 Struktura a spuštění projektu 

Při spuštění projektu prostřednictvím hlavního souboru main.py umístěného v kořenové 

složce projektu je spuštěna jak serverová, tak klientská část aplikace. Pro zajištění 

paralelního běhu obou částí je využívána knihovna multiprocessing, což umožňuje více 

vláknové spouštění. 

Při spuštění aplikace je nejprve nutné zvolit režim serverové aplikace a až následně 

režim klientské. Tím je zajištěno, že serverová část bude připravena pro navázání spojení 

s klientem. Po zvolení těchto režimů je spojení mezi klientskou a serverovou částí 

navazováno automaticky. 
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Podrobný popis postupu spuštění a seznam požadovaných balíčků včetně návodu na 

jejich instalaci je uveden v souboru README.md, který je součástí projektu. 

 

Obrázek 15 Diagram struktury projektu 

(zdroj: vlastní) 
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7 TESTOVÁNÍ IMPLEMENTACE 

V této kapitole jsou prezentovány výsledky testování implementovaných algoritmů 

a navrženého TLS-like protokolu. Provedené testy zahrnují ověření správnosti 

implementace pomocí srovnání výsledků s oficiálními testovacími vektory a referenčními 

implementacemi, a dále výkonnostní testování zaměřené na měření rychlosti generování 

klíčových párů, výpočtu sdíleného tajemství, operací zapouzdření a odpouzdření, 

i celkového trvání handshake. Součástí testování bylo také vyhodnocení velikosti 

přenášených dat při komunikaci. 

Každý výkonnostní test byl proveden opakovaně (100 měření) a výsledky jsou uváděny 

jako průměrné hodnoty pro minimalizaci vlivu náhodných odchylek. Pro automatizaci 

testování byl použit vlastní skript, který všechna měření zajišťuje a ukládá výsledky ke 

zpracování. Výsledky jsou prezentovány v tabulkách a grafech umožňujících přehledné 

srovnání jednotlivých implementací. 

Testování probíhalo na zařízení MacBook Pro s procesorem Apple M1 Pro, operačním 

systému macOS Sequoia (verze 15.4.1), v prostředí Python 3.12. 

7.1 Testování X25519 

Tato část se věnuje testování implementace algoritmu X25519. Testování zahrnuje ověření 

správnosti výměny klíčů a porovnání výsledků s oficiální knihovní implementací. Následně 

je provedeno také výkonnostní srovnání obou variant. 

7.1.1 Test správnosti 

Pro ověření správnosti a funkčnosti implementace algoritmu X25519 byl vytvořen testovací 

skript test_x25519.py, který obsahuje dvě samostatné testovací funkce. 

První funkce testu simuluje výměnu klíčů mezi dvěma stranami. Každá strana si 

vygeneruje vlastní klíčový pár a následně pomocí své privátní hodnoty a veřejné hodnoty 

druhé strany spočítá sdílené tajemství. Test ověřuje, zda jsou obě vypočtená sdílená 

tajemství identická, jak předpokládá Diffie-Hellmanův princip. Tento test potvrzuje, že 

implementace dokáže správně provádět výměnu klíčů. 

Druhá funkce v testu porovnává výsledky naší implementace s výsledky oficiální 

knihovní implementace X25519 z Python balíčku cryptography. Pro náhodně vygenerovaný 

vstupní skalár a veřejný bod se provede výpočet sdíleného tajemství jak pomocí vlastní 
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funkce x25519(), tak pomocí knihovny. Shoda výsledků potvrzuje korektnost implementace 

algoritmu. 

7.1.2 Výkonnostní testování  

V této části je provedeno výkonnostní porovnání vlastní implementace algoritmu X25519 

a oficiální implementace dostupné v knihovně cryptography. Měření zahrnuje průměrné 

časy generování klíčových párů a výpočtu sdíleného tajemství. 

Tabulka 13 Výkonnostní porovnání vlastní a oficiální implementace X25519 

Implementace Generování klíčů (ms) Výpočet sdíleného tajemství (ms) 

vlastní 1,599 3,308 

cryptography 0,144 0,172 

(zdroj: vlastní) 

 

Obrázek 16 Graf výkonnostní porovnání vlastní a oficiální implementace X25519 

(zdroj: vlastní) 
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Jak lze vidět v tabulce (Tabulka 13) i v grafu (Obrázek 16), knihovna cryptography 

dosahuje výrazně vyšší výkonnosti než vlastní implementace algoritmu X25519. Podle dat 

uvedených v tabulce je generování klíčového páru v knihovně cryptography přibližně 11krát 

rychlejší než ve vlastní implementaci a výpočet sdíleného tajemství je dokonce více než 

19krát rychlejší. Tyto rozdíly jsou způsobeny tím, že cryptography využívá optimalizované 

nativní implementace v jazyce C, zatímco vlastní verze byla implementována výhradně 

v jazyce Python bez dalších optimalizací. 

7.2 Testování MLKEM768 

Tato část se zabývá popisem testování vlastní implementace algoritmu ML-KEM768. 

V rámci testů byla posuzována jak správnost implementace, tak výkonnost jednotlivých 

operací – konkrétně generování klíčů, zapouzdření a odpouzdření. Výsledky byly 

porovnávány s referenční implementací v jazyce Python i s oficiální implementací v jazyce 

C, aby bylo možné objektivně zhodnotit funkčnost i efektivitu navrženého řešení. 

7.2.1 Test správnosti 

Pro ověření správnosti a funkčnosti implementace algoritmu ML-KEM768 byl vytvořen 

testovací skript test_mlkem768.py. Tento skript obsahuje sadu testovacích funkcí, které 

samostatně ověřují jednotlivé moduly a jejich implementované funkce – například převody 

bajtů, hashovací a kryptografické primitivy, vzorkování, NTT, šifrování a dešifrování, 

interní funkce KEM i kompletní API rozhraní. 

Následně byly porovnávány výstupy hlavních deterministických funkcí vlastní 

implementace s výstupy referenční knihovny kyber-py, avšak nebyla zjištěna shoda. Proto 

byly dále hledány oficiální KAT testy, které se však nepodařilo dohledat, a dostupné 

testovací vektory rovněž neodpovídaly hodnotám generovaným implementací. Navíc 

v průběhu ladění byly zjištěny dílčí nesrovnalosti v knihovně kyber-py (například odlišnost 

v hashovací funkci H(), kde je výsledku přičítán navíc jeden bajt), což komplikovalo přímé 

porovnání. Porovnání s oficiální implementací v jazyce C bylo omezené kvůli uzavřenosti 

interních funkcí a využití interního generátoru náhodných čísel, což znemožnilo detailní 

kontrolu mezivýsledků. 

V průběhu analýzy bylo zjištěno, že v implementaci dochází k nesprávnému generování 

K-PKE klíčů, což se odráží v odlišných výsledcích při porovnávání s testovacími vektory 

i s výstupy knihovny kyber-py. Tato chyba se projevuje zejména ve fázi generování 
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klíčového páru, kde některé hodnoty neodpovídají očekávaným výsledkům dle specifikace 

algoritmu ML-KEM768. 

Navzdory těmto obtížím jsou klíče i zašifrované texty generovány ve správné délce, je 

umožněno korektní šifrování a dešifrování zpráv a všechny základní operace fungují 

v souladu se specifikací. 

7.2.2 Výkonnostní testování  

V této části je analyzována výkonnost algoritmu ML-KEM768. Testování zahrnuje tři 

základní operace algoritmu – generování klíčového páru, zapouzdření sdíleného tajemství 

a jeho následné odpouzdření. Výkon vlastní implementace byl porovnáván s další čistě 

Pythonovou implementací využívající knihovnu kyber-py, která poskytuje funkční, ale 

neoptimalizovanou verzi algoritmu. Dále byl výkon porovnán s oficiální referenční 

implementací využívající knihovnu liboqs, která poskytuje optimalizované implementace 

v jazyce C zpřístupněné prostřednictvím Python wrapperu oqs-python. Tímto způsobem 

bylo možné srovnat tři úrovně implementací – vlastní studijní řešení, existující Pythonovou 

knihovnu a vysoce optimalizovanou C implementaci. 

Tabulka 14 Výkonnostní porovnání funkcí vlastní a referenčních implementací 

ML-KEM768 

Implementace Generování 

klíčů (ms) 

Zapouzdření 

(ms) 

Odpouzdření 

(ms) 

Celý KEM 

proces (ms) 

vlastní 6,074 15,181 10,680  26,284 

kyber-py 2,327 5,505 4,111 9,360 

liboqs 0,019 0,034 0,017 0,052 

(zdroj: vlastní) 
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Obrázek 17 Graf Výkonnostní porovnání funkcí ML-KEM u jednotlivých implementací 

(zdroj: vlastní) 

 

Obrázek 18 Graf Výkonnostní porovnání celého procesu ML-KEM u jednotlivých 

implementací 

(zdroj: vlastní) 
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Výsledky uvedené v tabulce (Tabulka 14) a grafech (Obrázek 17 a 18) ukazují výrazné 

rozdíly ve výkonnosti jednotlivých implementací algoritmu ML-KEM768. Nejpomalejší je 

vlastní implementace v jazyce Python, u které celý proces trvá přibližně trojnásobek času 

oproti čistě Pythonové knihovně kyber-py. Výrazný nárůst výkonu je vidět při použití 

knihovny liboqs, která díky optimalizované C implementaci dosahuje více než 

500násobného zrychlení oproti vlastní implementaci. Použití vysoce optimalizovaných 

knihoven je tak klíčové pro praktické nasazení kvantově odolných algoritmů v reálných 

systémech, kde je vysoká výkonnost nezbytná. 

7.3 Testování protokolu 

Tato část se zaměřuje na ověření správnosti a výkonnosti navrženého TLS-like protokolu 

v různých režimech výměny klíčů. Testování zahrnuje simulaci navazování zabezpečeného 

spojení mezi klientem a serverem, kde je posuzována shoda vypočítaných sdílených 

tajemství i porovnání výkonnostních parametrů, jako je délka handshaku a objem 

přenesených dat. Výsledky umožňují posoudit dopad použití postkvantových technik na 

efektivitu a datovou náročnost zabezpečené komunikace. 

7.3.1 Testování správnosti 

Pro účely ověření před samotným použitím v síťové komunikaci byl vytvořen testovací 

skript test_tls_handshake.py. Tento soubor simuluje proces navázání zabezpečeného spojení 

mezi klientem a serverem pro obě varianty – jak hybridní výměnu klíčů, tak klasickou 

výměnu. V každé simulaci je ověřeno, že obě strany nezávisle vypočítají totožné sdílené 

tajemství, čímž je potvrzena správnost celé výměny. Testování probíhá výhradně lokálně 

v rámci jednoho skriptu, bez použití skutečné síťové komunikace. 

7.3.2 Výkonnostní testování 

V této části jsou prezentovány výsledky výkonnostního testování tří režimů TLS-like 

protokolu. Měřeny byly všechny klíčové varianty: hybridní handshake využívající 

kombinaci algoritmů X25519 a ML-KEM768, záložní handshake, kdy klient podporuje 

hybridní výměnu, ale server podporuje pouze klasický X25519, a nakonec čistý handshake 

realizovaný pouze pomocí algoritmu X25519 na obou stranách. Cílem testování bylo 

porovnat průměrné časy trvání jednotlivých handshake procesů a analyzovat vliv použití 

postkvantových technik na celkovou rychlost navázání šifrovaného spojení. 
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Tabulka 15 Porovnání průměrné doby handshaku 

jednotlivých režimů 

Režim Průměrný čas handshaku (ms) 

hybridní 33,551 

záložní 13,786 

klasický 6,356 

(zdroj: vlastní) 

 

Obrázek 19 Graf porovnání průměrné doby handshaku jednotlivých režimů 

(zdroj: vlastní) 
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rychlejší než plně hybridní varianta. Nižší výkon záložního režimu je způsoben tím, že klient 

i v tomto případě generuje klíče pro ML-KEM768, které však nejsou serverem využity. 

Výsledky jednoznačně ukazují výkonnostní náklady spojené s nasazením postkvantových 

algoritmů v rámci TLS-like protokolu. 

Dále byla změřena velikost přenesených dat v jednotlivých režimech handshake. Byla 

zaznamenána velikost odeslaných dat ze strany klienta, přijatých dat od serveru a jejich 

součet, který představuje celkový objem přenesených dat během fáze navazování spojení. 

Tabulka 16 Porovnání velikosti přenesených dat během handshake v jednotlivých režimech 

Režim Odeslaná data (B) Přijatá data (B) Celková přenesená 

data (B) 

hybridní 7675 2420 10 095 

záložní 7675 233 7908 

klasický 286 233 519 

(zdroj: vlastní) 

 

Obrázek 20 Graf porovnání velikosti přenesených dat jednotlivých režimů 

(zdroj: vlastní) 
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Jak ukazuje tabulka a graf, hybridní handshake přenáší přibližně 20krát více dat než 

klasický handshake. Záložní režim přenáší přibližně 15krát více dat ve srovnání s klasickým 

režimem. Výrazné navýšení objemu přenesených dat v hybridním režimu je způsobeno 

přenosem rozměrného veřejného klíče ML-KEM768 a odpovídajícího šifrovaného textu. 

I když záložní režim eliminuje část komunikace spojenou s hybridním odpovědí serveru, 

klient stále posílá hybridní sdílený klíč, což způsobuje výrazně vyšší přenos dat oproti 

čistému X25519 handshaku. Výsledky jednoznačně potvrzují, že nasazení postkvantových 

kryptografických prvků přináší významné zvýšení datové režie při navazování 

zabezpečeného spojení. 

7.4 Shrnutí testů 

Provedené testy potvrdily, že všechny klíčové algoritmy i navržený TLS-like protokol 

fungují dle očekávání. U algoritmu X25519 byla ověřena správná realizace výměny klíčů 

i shoda výsledků s oficiální knihovní implementací, přestože vlastní řešení vykazuje nižší 

výkonnost kvůli absenci optimalizací. V případě ML-KEM768 byly sice zaznamenány 

nesrovnalosti při porovnávání s referenčními testovacími vektory a knihovnou kyber-py, 

základní operace jako šifrování, dešifrování i generování klíčů však probíhají v souladu se 

specifikací. 

Výkonnostní testy jednoznačně ukázaly, že použití optimalizovaných implementací, 

zejména v jazyce C, přináší řádově vyšší rychlost oproti čistě Pythonovým řešením. Největší 

rozdíly byly zaznamenány u ML-KEM768, kde optimalizovaná knihovna liboqs dosahuje 

180násobného zrychlení oproti knihovně kyber-py. 

Testování TLS-like protokolu dále potvrdilo, že nasazení postkvantových algoritmů 

v hybridním režimu znamená výrazné zvýšení časových i datových nároků 

handshake - handshake je až pětkrát pomalejší a objem přenesených dat až dvacetkrát vyšší 

oproti klasickému režimu X25519. 

Celkově lze shrnout, že použití postkvantových algoritmů přináší očekávané 

kompromisy v podobě vyšší výpočetní a datové náročnosti. Pro praktické nasazení je tak 

zásadní využívat optimalizované implementace, které tyto limity výrazně zmírňují. 
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ZÁVĚR 

Tato bakalářská práce byla zaměřena na postkvantovou kryptografii se zvláštním důrazem 

na praktickou implementaci a testování hybridního algoritmu X25519MLKEM768. Cílem 

bylo analyzovat aktuální stav v této oblasti, implementovat a ověřit funkčnost hybridního 

protokolu a porovnat jeho efektivitu s klasickými přístupy. Pracovní hypotéza 

předpokládala, že zavedení postkvantových mechanismů povede ke zvýšení výpočetní 

i datové náročnosti při navazování šifrovaného spojení. 

V teoretické části byly nejprve shrnuty hlavní důvody pro přechod k postkvantové 

kryptografii v souvislosti s hrozbou kvantových útoků. Byly popsány klíčové kategorie 

kvantově odolných algoritmů a rozebrán současný stav jejich vývoje a standardizace, 

především v rámci amerického institutu NIST, včetně přehledu finalistů a doporučení 

relevantních institucí, jako je NÚKIB. Práce také zhodnotila silné a slabé stránky 

jednotlivých přístupů a klíčová kritéria pro jejich výběr. 

Praktická část práce byla zaměřena na vlastní implementaci algoritmů X25519 

a ML-KEM768 a návrh TLS-like protokolu, který tyto algoritmy kombinuje pro bezpečnou 

výměnu klíčů v prostředí ohroženém kvantovými útoky. Funkčnost a správnost řešení byla 

ověřena prostřednictvím sady testovacích skriptů. Výsledky testování potvrdily, že nasazení 

hybridního postkvantového algoritmu skutečně znamená nárůst výpočetní i datové 

náročnosti handshake v porovnání s čistě klasickým protokolem, což potvrzuje původní 

pracovní hypotézu. Dále bylo zjištěno, že výkonnost implementací je významně ovlivněna 

volbou programovacího jazyka a mírou optimalizace kódu. 

Přínosem práce je praktická demonstrace možností a omezení hybridních 

postkvantových řešení, která může posloužit jako základ pro další optimalizaci a výzkum. 

Pro další rozvoj v této oblasti doporučuji zaměřit se na zlepšení efektivity implementace, 

integraci nových standardů, rozšíření testování na reálné síťové prostředí a podrobnou 

bezpečnostní analýzu, včetně odolnosti vůči konkrétním útokům a minimalizaci datové režie 

při zachování vysoké úrovně bezpečnosti i v budoucích podmínkách kvantové hrozby. 
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AES  Advanced Encryption Standard (Pokročilý šifrovací standard) 

ARM  Advanced RISC Machine (architektura pokročilého RISC procesoru) 

AWS  Amazon Web Services (webové služby Amazonu) 

AVX2   Advanced Vector Extensions 2 (rozšíření vektorových instrukcí 2) 

BIKE  Bit Flipping Key Encapsulation (zapouzdření klíče s bitovým překlápěním) 

BKZ  Block Korkine-Zolotarev (blokový algoritmus Korkin-Zolotarev  

pro redukci mřížek) 

CBD  Centered Binomial Distribution (centrální binomické rozdělení) 

CNSA  Commercial National Security Algorithm Suite  

(sada algoritmů pro národní bezpečnost, komerční použití)  

CVP  Closest Vector Problem (problém nejbližšího vektoru) 

Dk  Decryption key (dešifrovací klíč) 

DSA  Digital Signature Algorithm (algoritmus digitálního podpisu) 

ECC  Elliptic Curve Cryptography (kryptografie na eliptických křivkách)  

ECDH  Elliptic Curve Diffie-Hellman (Diffie-Hellman na eliptických křivkách) 

ECDSA Elliptic Curve Digital Signature Algorithm (digitální podpis na eliptických 

křivkách) 

EU  European Union (Evropská unie) 

EUF-CMA Existential Unforgeability under Chosen Message Attack (existenciální 

nefalšovatelnost proti zvolenému útoku na zprávu) 

FIPS  Federal Information Processing Standard  

(federální standard zpracování informací) 

FORPS Forest of Random Subsets (les náhodných podmnožin, použitý v SPHINCS+) 

GCM  Galois/Counter Mode (Galoisův/čítací mód blokové šifry) 

GeMSS Great Multivariate Short Signature (velmi krátký multivariační podpis) 
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HKDF HMAC-based Key Derivation Function (Funkce pro odvozování klíčů 

založená na HMAC) 

HQC  Hamming Quasi-Cyclic (kvazicyklický kód Hammingova typu) 

HTTPS HyperText Transfer Protocol Secure (zabezpečený protokol přenosu 

hypertextu) 

ICCS Institute of Commercial Cryptography Standards (Institut pro standardy 

komerční kryptografie) 

IND-CCA2 Indistinguishability under Adaptive Chosen Ciphertext Attack 

(nerozlišitelnost při adaptivním útoku s volbou šifrového textu) 

IoT  Internet of Things (internet věcí) 

IP  Internet Protocol (internetový protokol)  

IPsec  Internet Protocol Security (bezpečnost internetového protokolu) 

JSON  JavaScript Object Notation (formát zápisu objektů v JavaScriptu) 

K-PKE Kyber-like Public Key Encryption (Kyberu podobné šifrování s veřejným 

klíčem) 

KAT  Known Answer Test (test se známou odpovědí) 

KEM  Key Encapsulation Mechanism (mechanismus zapouzdření klíče) 

LAC  Lattice-based Cryptography (mřížková kryptografie, název algoritmu) 

LEDAcrypt Low-Density Generator Matrix Cryptosystem (Kódový postkvantový 

algoritmus) 

LWE  Learning With Errors (učení s chybami) 

ML-DSA Module-Lattice-Based Digital Signature Algorithm (modulově-mřížkový 

algoritmus digitálního podpisu) 

ML-KEM Module-Lattice-based Key Encapsulation Mechanism (modulově mřížkový 

mechanismus zapouzdření klíče) 

MLWE Module Learning With Errors (modulární učení s chybami) 

MPKC  Multivariate Public Key Cryptography (multivariační kryptografie s 

veřejným klíčem) 
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NEDO New Energy and Industrial Technology Development Organization 

(Japonská agentura pro výzkum a vývoj) 

NGCC Next-generation Commercial Cryptographic Algorithms (Komerční 

kryptografické algoritmy nové generace) 

NGCC-BC NGCC Block Cipher (Blokové šifry v rámci NGCC) 

NGCC-CH NGCC Cryptographic Hash (Hashovací funkce v rámci NGCC) 

NGCC-PK NGCC Public Key (Asymetrické algoritmy v rámci NGCC) 

NIST  National Institute of Standards and Technology (Národní institut pro 

standardy a technologie, USA) 

NP  Nondeterministic Polynomial time (nedeterministický polynomiální čas) 

NSS  Network Security Services (Sada kryptografických knihoven od Mozilly) 

NTRU   N-th degree Truncated Polynomial Ring Units (kryptosystém založený na 

polynomiálních okruzích) 

NTT  Number Theoretic Transform (číselná teoretická transformace) 

NÚKIB Národní úřad pro kybernetickou a informační bezpečnost (Národní úřad pro 

kybernetickou a informační bezpečnost) 

Pk  Public key (veřejný klíč) 

PQC  Post-Quantum Cryptography (postkvantová kryptografie) 

RLWE  Ring Learning With Errors (učení s chybami v okruhu) 

SA  Security Association (bezpečnostní asociace) 

SABER Secure And Fast Encryption Routine (rychlá a bezpečná šifrovací procedura) 

SHA-2  Secure Hash Algorithm 2 (bezpečný hashovací algoritmus 2. generace) 

SHA-3  Secure Hash Algorithm 3 (bezpečný hashovací algoritmus 3. generace) 

SHAKE256 Secure Hash Algorithm Keccak Extendable-Output Function 256 (Varianta 

SHA-3 s volitelnou délkou výstupu) 

SIDH   Supersingular Isogeny Diffie-Hellman 

(Diffie-Hellman na supersingulárních isogeniích) 
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SIKE   Supersingular Isogeny Key Encapsulation 

(zapouzdření klíče na bázi supersingulárních isogenií) 

Sk  Secret key (soukromý klíč) 

SLH-DSA Stateless Hash-based Digital Signature Algorithm (bezdotazový hashový 

algoritmus digitálního podpisu) 

SPHINCS Stateless Practical Hash-based Incredibly Nice Cryptographic Signature 

(bezdotazový praktický hashový kryptografický podpis) 

SSH  Secure Shell (zabezpečený protokol vzdáleného přístupu) 

SVP  Shortest Vector Problem (problém nejkratšího vektoru) 

TCP  Transmission Control Protocol (protokol řízení přenosu) 

TLS  Transport Layer Security (zabezpečení transportní vrstvy) 

VPN  Virtual Private Network (virtuální privátní síť) 

WOTS+ Winternitz One-Time Signature Plus (Winternitzův jednorázový podpis, 

rozšířený) 

XMSS  eXtended Merkle Signature Scheme (rozšířený Merkleův podpisový schéma) 
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PŘÍLOHA P I: ZDROJOVÉ KÓDY APLIKACE 

README.md 

• Obsahuje základní informace o projektu a podrobné instrukce k instalaci a spuštění. 

main.py 

• Hlavní spouštěcí soubor projektu.  

složka client_server 

• Implementace klienta a serveru včetně GUI. 

Obsahuje: 

  client.py a server.py – logika klientské a serverové části. 

  složka gui – soubory pro grafické uživatelské rozhraní klienta a serveru. 

složka tests 

• Testovací skripty pro ověření správnosti implementace. 

Obsahuje: 

  test_mlkem768.py – testování algoritmu ML-KEM768. 

  test_tls_handshake.py – testování správnosti navázání handshake. 

  test_x25519.py – testování algoritmu X25519. 

složka benchmark 

• Výkonnostní testy a generování grafů. 

Obsahuje: 

  run_benchmark.py – měření rychlosti jednotlivých operací. 

  generate_graphs.py – skript pro generování grafu výsledků. 

složka tls 

• Implementace hybridního TLS-like protokolu a souvisejících algoritmů. 

Obsahuje: 

mlkem768.py, x25519.py, tls_core.py – základní logika protokolu. 

složka mlkem768_files – interní moduly pro ML-KEM768. 
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