

Možnosti implementace kvantově odolných
algoritmů

Filip Hajduch

Bakalářská práce
2025

PROHLÁŠENÍ AUTORA BAKALÁŘSKÉ PRÁCE

Beru na vědomí, že

• odevzdáním bakalářské práce souhlasím se zveřejněním své práce podle zákona

č. 111/1998 Sb., v platném znění bez ohledu na výsledek obhajoby;

• bakalářská práce bude uložena v elektronické podobě v univerzitním informačním

systému a bude dostupná k nahlédnutí;

• jedno vyhotovení bakalářské práce v listinné podobě bude ponecháno Univerzitě

Tomáše Bati ve Zlíně k uložení;

• na moji bakalářskou práci se plně vztahuje zákon č. 121/2000 Sb. o právu autorském,

o právech souvisejících s právem autorským a o změně některých zákonů (autorský

zákon) ve znění pozdějších právních předpisů, zejm. § 35 odst. 3;

• podle § 60 odst. 1 autorského zákona má Univerzita Tomáše Bati ve Zlíně právo

na uzavření licenční smlouvy o užití školního díla v rozsahu § 12 odst. 4 autorského

zákona;

• podle § 60 odst. 2 a 3 mohu užít své dílo – bakalářskou práci – nebo poskytnout

licenci k jejímu využití jen s předchozím písemným souhlasem Univerzity Tomáše

Bati ve Zlíně, která je oprávněna v takovém případě ode mne požadovat přiměřený

příspěvek na úhradu nákladů, které byly Univerzitou Tomáše Bati ve Zlíně

na vytvoření díla vynaloženy (až do jejich skutečné výše);

• pokud bylo k vypracování bakalářské práce využito softwaru poskytnutého

Univerzitou Tomáše Bati ve Zlíně nebo jinými subjekty pouze ke studijním

a výzkumným účelům (tj. k nekomerčnímu využití), nelze výsledky bakalářské práce

využít ke komerčním účelům;

• pokud je výstupem bakalářské práce jakýkoliv softwarový produkt, považují se

za součást práce rovněž i zdrojové kódy, popř. soubory, ze kterých se projekt skládá;

neodevzdání této součásti může být důvodem k neobhájení práce.

Prohlašuji, že

• jsem na bakalářské práci pracoval(a) samostatně a použitou literaturu jsem řádně

citoval(a); v případě publikace výsledků budu uveden(a) jako spoluautor;

• odevzdaná verze bakalářské práce a verze elektronická nahraná do IS/STAG jsou

obsahově totožné.

• při tvorbě této práce jsem použil nástroj generativního modelu AI ChatGPT;

https://chatgpt.com za účelem zpřesnění odborné terminologie a jazykové korektury

textu. Po použití tohoto nástroje jsem provedl kontrolu obsahu a přebírám za něj

plnou zodpovědnost.

Ve Zlíně, dne

 podpis autora

ABSTRAKT

Tato bakalářská práce se zabývá problematikou postkvantové kryptografie v souvislosti

s rozvojem kvantových počítačů a rostoucí potřebou zabezpečení digitální komunikace.

Práce shrnuje aktuální stav, principy a standardizační snahy v oblasti kvantově odolných

algoritmů dle doporučení organizací NIST a NÚKIB. Hlavní část je zaměřena na hybridní

algoritmus X25519MLKEM768, jeho implementaci a testování v prostředí Python.

Výsledky jsou porovnávány s dalšími přístupy z hlediska výkonnosti, bezpečnosti i datové

režie. Práce poskytuje ucelený pohled na možnosti nasazení moderních kryptografických

algoritmů a poukazuje na klíčové výhody i limity jejich využití v praxi.

Klíčová slova: postkvantová kryptografie, kvantově odolné algoritmy, X25519MLKEM768,

NIST, NÚKIB, hybridní šifrování

ABSTRACT

This bachelor thesis focuses on post-quantum cryptography in connection with the

development of quantum computers and the growing need for secure digital communication.

The thesis summarizes the current state, principles, and standardization efforts related to

quantum-resistant algorithms according to NIST and NÚKIB recommendations. The main

part is devoted to the hybrid algorithm X25519MLKEM768, its implementation and testing

in a Python environment. The results are compared with other approaches in terms of

performance, security, and data overhead. The thesis provides a comprehensive overview of

the deployment possibilities of modern cryptographic algorithms and highlights the main

advantages and limitations of their practical use.

Keywords: post-quantum cryptography, quantum-resistant algorithms,

X25519MLKEM768, NIST, NÚKIB, hybrid encryption

Rád bych touto cestou poděkoval panu Ing. Petru Žáčkovi, Ph.D., za odborné vedení, cenné

rady, vstřícnost a podporu během zpracování této bakalářské práce. Jeho připomínky

a podněty významně přispěly ke zkvalitnění výsledků i celkové úrovně práce.

Poděkování patří také mé rodině za trpělivost, podporu a povzbuzení v průběhu celého

studia.

OBSAH

ÚVOD .. 13

I TEORETICKÁ ČÁST .. 14

1 POSTKVANTOVÁ KRYPTOGRAFIE... 15

1.1 HROZBA KVANTOVÝCH POČÍTAČŮ ... 15

1.1.1 Shorův algoritmus .. 15
1.1.2 Groverův algoritmus .. 16

1.2 PŘÍSTUPY POSTKVANTOVÉ KRYPTOGRAFIE .. 16

1.2.1 Kryptografie založená na mřížkách ... 16
1.2.2 Kryptografie založená na teorii kódování .. 18
1.2.3 Kryptografie založená na hashovacích funkcích .. 19
1.2.4 Prolomené přístupy .. 20
1.2.5 Porovnání jednotlivých přístupů .. 21

2 STANDARDIZAČNÍ PROCES NIST PQC .. 23

2.1 PRVNÍ KOLO STANDARDIZAČNÍHO PROCESU ... 24

2.1.1 Hodnotící kritéria ... 24
2.1.2 Výsledky prvního kola ... 25

2.2 DRUHÉ KOLO STANDARDIZAČNÍHO PROCESU ... 25

2.3 TŘETÍ KOLO STANDARDIZAČNÍHO PROCESU ... 27

2.3.1 Hodnotící kritéria ... 27
2.3.2 Výsledky třetího kola ... 31

3 NIST STANDARDY ... 33

3.1 FIPS 203 .. 33

3.1.1 Varianty .. 33
3.1.2 KEM Mechanismus .. 35
3.1.3 Tvorba klíčů ... 36
3.1.4 Proces zapouzdření ... 36
3.1.5 Proces odpouzdření .. 37
3.1.6 Implementace a využití .. 38

3.2 FIPS 204 .. 39

3.2.1 Varianty .. 39
3.2.2 Tvorba klíčů ... 40
3.2.3 Proces podepisování ... 41
3.2.4 Proces ověřování .. 42
3.2.5 Implementace a využití .. 43

3.3 FIPS 205 .. 43

3.3.1 Varianty .. 43
3.3.2 Tvorba klíčů ... 45
3.3.3 Proces podepisování ... 46
3.3.4 Proces ověřování .. 47
3.3.5 Implementace a využití .. 48

3.4 ALTERNATIVY KE STANDARDŮM .. 48

3.4.1 BIKE ... 49
3.4.2 Classic McEliece .. 49
3.4.3 HQC .. 50
3.4.4 SIKE ... 50

4 PŘECHOD NA POSTKVANTOVOU KRYPTOGRAFII 51

4.1 DOPORUČENÍ NÚKIB ... 51

4.2 DOPORUČENÍ OSTATNÍCH ORGANIZACÍ ... 52

5 HYBRIDNÍ ALGORITMUS X25519MLKEM768 ... 55

5.1 X25519 – ALGORITMUS ELIPTICKÝCH KŘIVEK ... 55

5.2 PRINCIP FUNGOVÁNÍ ... 55

5.3 REÁLNÉ VYUŽITÍ .. 57

5.4 ALTERNATIVNÍ HYBRIDNÍ ALGORITMY ... 58

5.4.1 P-384MLKEM768 .. 58
5.4.2 RSA3072-MLKEM768 .. 58
5.4.3 P-384BIKEL3 ... 59
5.4.4 P-384HQC192 .. 59

II PRAKTICKÁ ČÁST ... 60

6 IMPLEMENTACE X25519MLKEM768 ... 61

6.1 IMPLEMENTACE KLASICKÉ VÝMĚNY KLÍČŮ – X22519 .. 61

6.1.1 Aritmetické operace ... 62
6.1.2 Pomocné bezpečnostní funkce ... 62
6.1.3 Hlavní X25519 funkce ... 63
6.1.4 Generování klíčového páru .. 63
6.1.5 Výpočet sdíleného tajemství .. 63

6.2 IMPLEMENTACE POSTKVANTOVÉ VÝMĚNY KLÍČŮ – MLKEM768 64

6.2.1 Kryptografické primitiva .. 64
6.2.2 Implementace pomocných algoritmů ... 65
6.2.3 Implementace NTT a polynomiálního násobení .. 66
6.2.4 Implementace schématu K-PKE .. 67
6.2.5 Implementace interních algoritmů .. 68
6.2.6 Hlavní algoritmy ML-KEM ... 69

6.3 NÁVRH TLS-LIKE PROTOKOLU ... 70

6.4 IMPLEMENTACE PROTOKOLU .. 71

6.5 UŽIVATELSKÉ ROZHRANÍ .. 73

6.6 STRUKTURA A SPUŠTĚNÍ PROJEKTU .. 78

7 TESTOVÁNÍ IMPLEMENTACE .. 80

7.1 TESTOVÁNÍ X25519 ... 80

7.1.1 Test správnosti .. 80
7.1.2 Výkonnostní testování .. 81

7.2 TESTOVÁNÍ MLKEM768 ... 82

7.2.1 Test správnosti ... 82
7.2.2 Výkonnostní testování .. 83

7.3 TESTOVÁNÍ PROTOKOLU ... 85

7.3.1 Testování správnosti ... 85
7.3.2 Výkonnostní testování .. 85

7.4 SHRNUTÍ TESTŮ .. 88

ZÁVĚR ... 89

SEZNAM POUŽITÉ LITERATURY .. 91

SEZNAM OBRÁZKŮ ... 95

SEZNAM TABULEK .. 96

SEZNAM POUŽITÝCH SYMBOLŮ A ZKRATEK ... 97

SEZNAM PŘÍLOH .. 101

UTB ve Zlíně, Fakulta aplikované informatiky 13

ÚVOD

S rozvojem kvantových počítačů čelí současné kryptografické systémy zásadní hrozbě.

Kvantové počítače mají potenciál prolomit algoritmy, které jsou dnes považovány za

bezpečné, a tím zásadně ovlivnit digitální bezpečnost napříč všemi obory. Výběr tohoto

tématu byl motivován rostoucí aktuálností problematiky a potřebou reagovat na rychlý vývoj

v oblasti postkvantové kryptografie.

V současnosti probíhá intenzivní výzkum i standardizace nových kryptografických

algoritmů, zejména v rámci organizace NIST, a doporučení k jejich nasazení vydávají

i národní autority jako NÚKIB. Přestože jsou některé nové algoritmy již doporučovány,

otázka jejich efektivity, praktického nasazení a možných kompromisů zůstává stále

otevřená.

Cílem této práce bylo analyzovat aktuální stav v oblasti postkvantové kryptografie,

implementovat a otestovat hybridní algoritmus X25519MLKEM768 a posoudit jeho výhody

a nevýhody v porovnání s dalšími přístupy. Pracovní hypotéza vycházela z předpokladu, že

hybridní postkvantové algoritmy přinášejí zvýšenou výpočetní i datovou náročnost, což

může mít zásadní dopad na jejich praktické nasazení.

Přínosem této práce je detailní srovnání teoretických možností a praktických výsledků

při implementaci moderních kvantově odolných algoritmů, což může pomoci odborné

komunitě i praxi lépe se zorientovat v problematice a zvolit vhodné řešení při přechodu na

postkvantovou kryptografii.

14 UTB ve Zlíně, Fakulta aplikované informatiky

 TEORETICKÁ ČÁST

UTB ve Zlíně, Fakulta aplikované informatiky 15

1 POSTKVANTOVÁ KRYPTOGRAFIE

Experti odhadují, že kvantové počítače schopné prolomit současné asymetrické

kryptografické systémy, jako je Rivest–Shamir–Adleman (RSA), mohou být dostupné

během příštích 10 až 20 let. Tento časový rámec závisí na rychlosti technologického pokroku

a investicích do vývoje kvantových počítačů. Ačkoli přímé prolomení šifrovacích algoritmů

zatím nepředstavuje bezprostřední hrozbu, nebezpečí spočívá v současném sběru

šifrovaných dat. Tato data mohou být v budoucnu zpětně dešifrována pomocí kvantových

počítačů, což má zásadní dopad na ochranu citlivých informací, které mají dlouhou dobu

životnosti, například v oblasti zdravotnictví, financí nebo státní bezpečnosti[1]

Postkvantová kryptografie (PQC) se zaměřuje na vývoj kryptografických algoritmů,

které zajišťují ochranu dat i v prostředí kvantových počítačů. Tyto algoritmy využívají

matematické problémy, které jsou považovány za obtížně řešitelné i s využitím kvantových

výpočetních technologií. Význam PQC spočívá nejen v ochraně současných systémů,

ale i v jejich přípravě na budoucí výzvy spojené s masivním rozšířením kvantových

počítačů.

1.1 Hrozba kvantových počítačů

Moderní kryptografie je založena na matematických problémech, které jsou pro klasické

počítače považovány za neřešitelné v rozumném čase. Například algoritmus RSA využívá

obtížnosti faktorizace velkých čísel, zatímco algoritmy Diffie-Hellman a kryptografie

eliptických křivek (ECC) staví na složitosti nalezení diskrétního logaritmu. U symetrických

šifer, jako je například Advanced Encryption Standard (AES), je bezpečnost založena na

nemožnosti efektivního prohledání všech možných klíčů. Vývoj kvantových počítačů však

tuto rovnováhu zásadně narušuje. Kvantové algoritmy, jako jsou Shorův a Groverův,

umožňují efektivně řešit úlohy, na nichž stojí bezpečnost těchto systémů, a tím výrazně

ohrožují jejich odolnost vůči útokům.[2]

1.1.1 Shorův algoritmus

Shorův algoritmus, představený autorem Peterem Shorem v roce 1994, je kvantový

algoritmus, který efektivně řeší dva klíčové matematické problémy: faktorizaci velkých čísel

a nalezení diskrétního logaritmu. Shorův algoritmus využívá schopnosti kvantových

počítačů, jako je superpozice a kvantová Fourierova transformace, k dosažení výsledků,

které jsou pro klasické algoritmy výpočetně neřešitelné.

16 UTB ve Zlíně, Fakulta aplikované informatiky

Princip Shorova algoritmu spočívá ve dvou hlavních krocích. Nejprve je problém

převeden na zjištění periodicity specifické funkce, což je úkol zvládnutelný pomocí

kvantových výpočtů. Poté je pomocí kvantové Fourierovy transformace určena perioda,

která vede k efektivní faktorizaci čísla nebo nalezení diskrétního logaritmu.[3]

1.1.2 Groverův algoritmus

Groverův algoritmus, navržený Lovem K. Groverem v roce 1996, přináší kvadratické

zrychlení při vyhledávání v nestrukturovaných databázích. Oproti klasickým algoritmům,

které vyžadují v průměru N/2 pokusů pro N položek, zvládne Groverův algoritmus najít

hledaný prvek za přibližně √N iterací. Algoritmus opakovaně zesiluje pravděpodobnost

správného řešení pomocí orákula a amplifikační operace.[4]

Hlavní dopad na kryptografii je u symetrických šifer, jako je AES – efektivní délka

klíče je kvůli Groverovu algoritmu snížena na polovinu (např. 128bitový klíč má efektivní

bezpečnost pouze 64 bitů), což vede k doporučení používat dvojnásobnou délku klíče.

Groverův algoritmus může mít vliv i na složitější problémy jako je Shortest Vector Problem

(SVP) v oblasti postkvantové kryptografie, kde může být využit v hybridních

kvantově-klasických útocích na některé mřížkové systémy.[5]

1.2 Přístupy postkvantové kryptografie

Postkvantová kryptografie se snaží zajistit bezpečnost šifrovacích systémů i v době, kdy

budou dostupné výkonné kvantové počítače. Na rozdíl od současné kryptografie jsou nové

algoritmy navrhovány tak, aby jejich bezpečnost byla založena na matematických

problémech, pro které zatím nejsou známy efektivní kvantové algoritmy.

V této kapitole budou popsány a vzájemně srovnány přístupy, které jsou v současnosti

považovány za kvantově odolné, pro něž neexistují známé efektivní kvantové útoky.

Zároveň budou zmíněny i přístupy, které byly v minulosti dlouho považovány za bezpečné,

ale s rozvojem kvantových algoritmů byly prolomeny a dnes se již nedoporučují pro

praktické nasazení.

1.2.1 Kryptografie založená na mřížkách

Kryptografie založená na mřížkách představuje jeden z hlavních směrů postkvantové

kryptografie. Tento přístup staví na pravidelných geometrických strukturách, nazývaných

UTB ve Zlíně, Fakulta aplikované informatiky 17

mřížky – množinách bodů v n-rozměrném prostoru, které vznikají jako lineární kombinace

několika bázových vektorů s celočíselnými koeficienty. [6]

Obrázek 1 Dvourozměrná mřížka a dvě možné báze

(zdroj: [6])

Matematickým základem jsou obtížné výpočetní problémy, jako je SVP a Closest

Vector Problem (CVP). Ty spočívají v hledání nejkratšího nenulového vektoru v mřížce,

respektive nejbližšího bodu k danému vektoru mimo mřížku. Vysoká výpočetní složitost

těchto problémů, zejména ve vyšších dimenzích, zajišťuje jejich odolnost vůči jak

klasickým, tak kvantovým počítačům.[7]

Na těchto problémech jsou založeny moderní kryptografické konstrukce, jako jsou

Learning With Errors (LWE) a jeho rozšíření Ring-Learning With Errors (RLWE).

V případě LWE se do výpočtů přidává šum, což znesnadňuje zpětné odvození původních

dat. RLWE tuto myšlenku rozšiřuje do algebraických struktur kruhů (např. polynomiálních

okruhů), čímž umožňuje efektivnější výpočty a menší velikosti klíčů při zachování stejné

úrovně bezpečnosti.[8]

Mřížková kryptografie nachází široké uplatnění v moderních šifrovacích algoritmech

navržených jako odolné vůči kvantovým útokům. Mezi klíčové příklady patří algoritmus

Kyber, určený pro výměnu klíčů, a Dilithium, algoritmus pro digitální podpisy. Oba tyto

algoritmy, byly v roce 2024 standardizovány jako federální standardy pro zpracování

informací (FIPS) 203 a 204.[9; 10]

18 UTB ve Zlíně, Fakulta aplikované informatiky

1.2.2 Kryptografie založená na teorii kódování

Kryptografie založená na kódech využívá principy z oblasti kódování s chybovou korekcí.

Základní myšlenkou je zakódovat zprávu pomocí určitého kódu a poté ji úmyslně „narušit“

přidáním chyb. Dekódování je možné pouze se znalostí tajného kódu, který umožňuje chyby

odstranit. Bez této znalosti je zpětné dekódování výpočetně velmi náročné, a to i s pomocí

kvantového počítače.

Nejznámějším zástupcem kódové kryptografie je McElieceův kryptosystém, navržený

již v roce 1978. Využívá tzv. Goppovy kódy, které umožňují efektivní opravu chyb, ale

z pohledu útočníka působí jako náhodné matice. Zpráva se zašifruje pomocí veřejného klíče

ve formě generující matice a přidáním náhodného vektoru chyb. Dešifrování je možné pouze

se znalostí tajného dekódovacího algoritmu. Bez něj je nalezení původní zprávy výpočetně

neproveditelné. Princip fungování McElieceova je znázorněn na Obrázku 2. Existuje

i Niederreiterova varianta, která je s původním systémem ekvivalentní, liší se však

způsobem zakódování zprávy.[6]

V rámci standardizačního procesu Národního institutu pro standardy a technologie

(NIST) byl McElieceův kryptosystém zařazen mezi finalisty v kategorii mechanismů pro

výměnu klíčů (KEM – Key Encapsulation Mechanism). I přes svou vysokou odolnost vůči

kvantovým útokům nebyl nakonec doporučen ke standardizaci, a to především kvůli velké

velikosti veřejného klíče, která omezuje jeho praktické nasazení.

Obrázek 2 Schéma McElieceova kryptosystému

(zdroj: [11])

UTB ve Zlíně, Fakulta aplikované informatiky 19

Ve čtvrtém kole tohoto procesu byly ponechány čtyři alternativní kandidáty, z nichž tři

vycházejí z kódové kryptografie. Jedná se o algoritmy Classic McEliece, Bit Flipping Key

Encapsulation (BIKE) a Hamming Quasi-Cyclic (HQC). Tyto algoritmy zůstávají jako

záložní řešení pro případ, že by u hlavních finalistů došlo v budoucnu k objevení

bezpečnostních slabin.[12]

1.2.3 Kryptografie založená na hashovacích funkcích

Hashovací kryptografie představuje jednoduchý a robustní přístup k postkvantové

kryptografii. Využívá výhradně vlastností kryptografických hashovacích funkcí, jako je

odolnost vůči kolizím a jednoznačnost výstupu. Bezpečnost těchto systémů nezávisí na

složitých algebraických problémech, ale pouze na existenci jednosměrné funkce, což je

považováno za jeden z nejzákladnějších kryptografických předpokladů.[6]

Hashovací schémata se dělí na stavová a bezstavová. Stavová, jako je Merkleho

podpisový systém, využívají hashovací stromy, kde každý podpis odpovídá jedinečné větvi,

a proto vyžadují sledování stavu, aby nedošlo k opětovnému použití podpisového klíče – to

sice zajišťuje efektivitu, ale zároveň zvyšuje riziko chyb při správě klíčů. Naproti tomu

bezstavová schémata, jako Stateless Practical Hash-based Incredibly Nice Cryptographic

Signature Plus (SPHINCS+), tento problém odstraňují tím, že nevyžadují uchovávání stavu,

což usnadňuje nasazení v praxi, avšak za cenu větší výpočetní náročnosti a rozměrnějších

podpisů.[13]

Obrázek 3 Merkeleho strom s výškou 3

(zdroj: [6])

20 UTB ve Zlíně, Fakulta aplikované informatiky

Na obrázku (Obrázek 3) lze vidět schéma Merkleho strom s výškou 3. Spodní uzly ν₀

představují listy stromu odpovídající jednorázovým podpisovým klíčům. Pod každým listem

je znázorněna dvojice Xᵢ, Yᵢ, kde Xᵢ je jednorázový tajný klíč a Yᵢ odpovídající veřejný klíč,

který bývá typicky vytvořen jako hash hodnoty Xᵢ. Každý vnitřní uzel vzniká hashováním

svých dvou potomků, přičemž kořen stromu ν₃ slouží jako veřejný klíč celého schématu. Při

ověřování podpisu se využívá tzv. autentizační cesta od konkrétního listu až ke kořeni, což

umožňuje efektivní ověření bez nutnosti znalosti celého stromu.[13]

Bezstavový algoritmus SPHINCS+, který staví výhradně na hashovacích funkcích, byl

v roce 2024 oficiálně standardizován pod označením FIPS 205, čímž se stal prvním

schváleným postkvantovým podpisovým algoritmem nezávislým na algebraických

strukturách.[14]

1.2.4 Prolomené přístupy

I když se některé přístupy k postkvantové kryptografii původně jevily jako slibné a byly

zařazeny do standardizačních procesů, pozdější analýzy a praktické útoky odhalily jejich

zásadní zranitelnosti. Mezi nejvýznamnější příklady patří kryptografie založená na

isogeniích nad supersingulárními eliptickými křivkami a multivariační kryptografie.

Kryptografie založená na isogeniích využívá obtížnosti nalezení isogenie mezi

dvěma supersingulárními eliptickými křivkami. Tato metoda byla zpočátku považována za

slibnou postkvantovou alternativu, protože problémy spojené s isogeniemi nejsou přímo

řešitelné pomocí kvantových algoritmů jako Shorův algoritmus. [15]

Nejznámějšími zástupci této kategorie byly protokoly Supersingular Isogeny Diffie-

Hellman (SIDH) a jeho rozšíření Supersingular Isogeny Key Encapsulation (SIKE), který

kromě základní výměny klíčů implementuje také mechanismus KEM, čímž rozšiřuje

možnosti praktického nasazení. SIKE byl zařazen jako alternativní kandidát do třetího kola

soutěže NIST PQC. Oba protokoly nabízely malé velikosti klíčů, ale jejich výpočetní

náročnost byla vysoká. [16]

V srpnu 2022 však Castryck a Decru publikovali útok, který umožnil efektivní získání

soukromého klíče, čímž byla bezpečnost SIDH a následně i SIKE zcela narušena.

Následkem toho byl SIKE vyřazen ze standardizačního procesu NIST a přestal být nadále

považován za bezpečný postkvantový kandidát. [17]

UTB ve Zlíně, Fakulta aplikované informatiky 21

Druhým již prolomeným přístupem je multivariační kryptografie (MPKC) založena na

obtížnosti řešení systémů multivariabilních kvadratických rovnic nad konečnými tělesy. Její

bezpečnost byla dlouho považována za velmi slibnou, protože řešení těchto rovnic je

nedeterministicky polynomiálně těžký (NP) problém, vůči kterému jsou kvantové algoritmy,

jako je Shorův, neúčinné. [7]

Jedním z nejznámějších zástupců tohoto přístupu byl algoritmus Rainbow, který byl

finalistou třetího kola soutěže NIST PQC. Využíval rozšíření schématu Oil-Vinegar

a sliboval vysokou efektivitu při podepisování a ověřování.[12]

Nicméně v roce 2022 byl Rainbow prakticky prolomen – útok umožnil efektivní

rekonstruování soukromého klíče na běžném hardwaru. Tato událost zásadně otřásla

důvěrou v MPKC a vedla k vyřazení Rainbow ze standardizačního procesu. Od té doby nebyl

žádný multivariační algoritmus zařazen mezi finální NIST standardy.[18]

1.2.5 Porovnání jednotlivých přístupů

Postkvantové kryptografické algoritmy se liší v několika klíčových aspektech, jako je

výpočetní náročnost, velikost klíčů, bezpečnostní status a praktická použitelnost. Tyto

faktory jsou rozhodující při výběru algoritmů pro reálné nasazení a jejich efektivitu

v různých prostředích.

Mřížková kryptografie patří mezi nejperspektivnější oblasti postkvantové kryptografie.

Mezi její hlavní výhody patří vysoká efektivita operací, relativně malé velikosti klíčů

a flexibilita nasazení v různých prostředích. Díky těmto vlastnostem jsou dva ze tří dosud

standardizovaných algoritmů v rámci NIST PQC založené právě na této technologii. Hlavní

nevýhodou může být větší velikost šifrovaného textu ve srovnání s klasickými algoritmy,

která je však v praxi stále dobře zvládnutelná.

Kryptografie založená na kódech, představuje jeden z nejdéle známých a zároveň

nejrobustnějších přístupů postkvantové kryptografie. Mezi hlavní výhody patří vysoká

odolnost vůči známým typům útoků a stabilní teoretický základ. Hlavní nevýhodou této

technologie je však velká velikost veřejného klíče, což výrazně komplikuje nasazení

v prostředích s omezenou pamětí nebo šířkou pásma. Přesto zůstává kódová kryptografie

vhodná zejména pro scénáře, kde velikost klíče není zásadní překážkou.

Kryptografie založená na hashovacích funkcích nabízí jednoduchý a konzervativní

přístup k postkvantové bezpečnosti. Její hlavní výhodou je nezávislost na algebraických

22 UTB ve Zlíně, Fakulta aplikované informatiky

strukturách, což zajišťuje robustnost vůči široké škále útoků, včetně těch kvantových.

Nevýhodou jsou však větší velikosti podpisů a vyšší výpočetní náročnost ve srovnání

s jinými přístupy, což může být limitující v prostředích s omezenými zdroji.

Isogenní kryptografie byla po dlouhou dobu považována za perspektivní přístup, a to

především díky velmi malé velikosti klíčů. V roce 2022 však došlo k jejímu prolomení

prostřednictvím efektivního útoku, který umožnil zrekonstruovat soukromý klíč. Následkem

toho byla vyřazena z procesu standardizace NIST PQC a její další použití již není

doporučováno.

Multivariační kryptografie, nabízela vysokou rychlost operací a nízkou výpočetní

náročnost, což z ní činilo atraktivního kandidáta pro nasazení v reálném světě. V roce 2022

však byl algoritmus Rainbow prolomen praktickým útokem. Tento průlom zásadně narušil

důvěru v multivariační přístupy, které již nejsou považovány za bezpečné a byly vyřazeny

ze standardizačního procesu NIST PQC. [19; 20]

Tabulka 1 Porovnání postkvantových přístupů

Typ Výhody Nevýhod

Bezpečnostní status

Mřížky Rychlost operací Obtížné nastavení

parametrů

Bezpečné

Kódy Malá velikost

podpisů, rychlé

operace

Velká velikost klíčů Bezpečné

Hashe Prokázán důkaz

bezpečnosti

Velká velikost

podpisů

Bezpečné

Isogenní Malá velikost klíčů Pomalejší rychlost

operací

Prolomeno

Multivariační Rychlost operací Velká velikost klíčů Prolomeno

(zdroj: [7])

UTB ve Zlíně, Fakulta aplikované informatiky 23

2 STANDARDIZAČNÍ PROCES NIST PQC

NIST zahájil proces standardizace post-kvantové kryptografie jako reakci na hrozbu, kterou

představují kvantové počítače pro současné kryptografické systémy. Tento proces staví na

dosavadních úspěšných standardizačních projektech, jako byly výběry algoritmů AES

a Secure Hash Algorithm 3 (SHA-3), a klade důraz na transparentnost a zapojení odborné

komunity.

První významný krok NIST zahrnoval vytvoření hodnotících kritérií, která reflektují

požadavky na bezpečnost, výkon a implementační vlastnosti algoritmů. Tato kritéria byla

zveřejněna k veřejné konzultaci v roce 2016 a následně finalizována. Na základě těchto

kritérií byla v roce 2017 vyhlášena výzva k předkládání návrhů algoritmů pro šifrování,

digitální podpisy a výměnu klíčů. Cílem NIST je vybrat algoritmy, které budou schopny

odolat kvantovým i klasickým útokům, přičemž proces výběru je nastaven tak, aby zajistil

dostatečný prostor pro odborné hodnocení a zpětnou vazbu.

NIST zdůrazňuje, že tento proces není koncipován jako soutěž, ale jako otevřená

platforma, která má vést ke konsensu o nejvhodnějších standardech. Návrhy jsou hodnoceny

na základě jejich odolnosti vůči různým typům útoků, jejich výkonnosti a také flexibility

implementace na široké škále zařízení a platforem. Po přijetí návrhů byla stanovena tří až

pětiletá lhůta pro veřejné hodnocení, během níž budou návrhy analyzovány a testovány.

Tento přístup má zajistit, že standardizované algoritmy budou odpovídat nejen současným,

ale i budoucím potřebám.

Proces zahrnuje také důraz na tzv. "crypto agility", tedy schopnost rychle a efektivně

přejít na nové standardy bez zásadních narušení stávajících systémů. To je zvláště důležité

v kontextu kvantových počítačů, jejichž plný potenciál by mohl být realizován během

příštích 10 až 20 let.

Jedním z klíčových cílů NIST je zajistit, aby nové standardy byly přijaty nejen na

národní, ale i na globální úrovni. Proto NIST aktivně spolupracuje s odborníky z akademické

sféry, průmyslu a dalších standardizačních organizací. Transparentnost celého procesu má

zajistit důvěru v nové standardy a jejich hladkou implementaci do současné

infrastruktury.[21]

24 UTB ve Zlíně, Fakulta aplikované informatiky

2.1 První kolo standardizačního procesu

První kolo standardizačního procesu NIST PQC [22], které probíhalo od prosince 2017 do

ledna 2019, představovalo klíčovou fázi v identifikaci algoritmů odolných vůči kvantovým

útokům. Tento proces umožnil identifikovat slibné návrhy a zároveň poukázat na slabiny

některých algoritmů. Výsledkem byla užší skupina kandidátů, kteří postoupili do druhého

kola, a zajistilo se, že vybrané algoritmy splňují nejen technická kritéria, ale také očekávání

odborné kryptografické komunity.

Do procesu bylo přihlášeno 82 návrhů algoritmů, z nichž 69 splnilo minimální

požadavky na přijetí a bylo zařazeno mezi kandidáty prvního kola. Tyto návrhy zahrnovaly

20 schémat pro digitální podpisy a 49 algoritmů pro šifrování veřejného klíče nebo výměnu

klíčů. Mezi základní podmínky přijetí patřilo poskytnutí referenční implementace v jazyce

C, testovacích případů a písemné specifikace. Algoritmy musely být rovněž

implementovatelné na široké škále hardwarových a softwarových platforem.

2.1.1 Hodnotící kritéria

Hodnocení kandidátů v prvním kole standardizačního procesu NIST PQC se řídilo třemi

hlavními kritérii: bezpečností, výkonem a náklady a charakteristikami algoritmů.

Bezpečnost – Bezpečnost byla nejdůležitějším kritériem. Algoritmy musely poskytovat

ochranu proti kvantovým i klasickým útokům a splňovat požadavky na odolnost vůči

adaptivním útokům na šifrované texty (IND-CCA2 – indistinguishability under chosen

ciphertext attack) a podpisy (EUF-CMA – existential unforgeability under chosen message

attack). Hodnoceny byly také odolnost vůči útokům postranními kanály a dopředná

bezpečnost. NIST definoval pět kategorií bezpečnosti, aby mohl porovnat odolnost

kandidátů.

Výkon a náklady – Důraz byl kladen na efektivitu algoritmů, včetně velikosti klíčů,

šifrovaných textů a podpisů, výpočetní náročnosti a paměťových požadavků. Algoritmy

musely být implementovatelné na široké škále hardwarových a softwarových platforem,

přičemž NIST prováděl předběžné testy na referenční platformě.

Charakteristiky algoritmů – Upřednostňovány byly algoritmy s jednoduchým

a flexibilním designem, které podporují široké nasazení a snadnou analýzu bezpečnosti.

Hodnoceny byly také jejich licenční podmínky a dostupnost implementací.

UTB ve Zlíně, Fakulta aplikované informatiky 25

2.1.2 Výsledky prvního kola

Na základě hodnocení podle kritérií definovaných v předešlé kapitole bylo z 69 kandidátů

prvního kola vybráno 26 algoritmů, které postoupily do druhého kola. Z těchto 26 algoritmů

bylo 17 určeno pro šifrování veřejného klíče a výměnu klíčů a 9 pro digitální podpisy.

Tabulka 2 Seznam algoritmů vybraných do druhého kola standardizace

Digitální Podpisy Šifrování a výměna klíčů

CRYSTALS-DILITHIUM BIKE

FALCON Classic McEliece

GeMSS CRYSTALS-KYBER

LUOV FrodoKEM

MQDSS HQC

Picnic LAC

qTesla LEDAcrypt

Rainbow NewHope

SPHINCS+ NTRU

 NTRU Prime

 NTS-KEM

 ROLLO

 Round5

 RQC

 SABER

 SIKE

 Three Bears

(zdroj: [22])

2.2 Druhé kolo standardizačního procesu

V druhém kole procesu [23], které probíhalo od ledna roku 2019 do července 2020, bylo

vybíráno ze 26 kandidátů na standardizaci. Druhé kolo bylo klíčovou fází, ve které byla

kandidátská schémata podrobena detailnější analýze bezpečnosti, výkonu

26 UTB ve Zlíně, Fakulta aplikované informatiky

a implementačních vlastností. Hlavním cílem bylo identifikovat algoritmy s největším

potenciálem pro široké nasazení v éře post-kvantové kryptografie.

Během druhého kola prošly některé algoritmy významnými změnami, které zlepšily

jejich bezpečnost a výkon. Například u CRYSTALS-KYBER bylo nahrazeno odvození

klíče SHA3-256 za Secure Hash Algorithm Keccak Extendable-Output Function 256

(SHAKE256) a odstraněna komprese veřejného klíče, což zvýšilo efektivitu a snížilo riziko

útoků. Nth Degree Truncated Polynomial Ring Units (NTRU) byl po spojení s dalším

návrhem optimalizován, aby splňoval požadavky na bezpečnost, a byl rozšířen

o transformaci Fujisaki-Okamoto. Algoritmus Strongly-Attackable Block Encryption with

Rounding (SABER) získal pevnější bezpečnostní základ díky úpravám parametrů a lepší

formální analýze. U FrodoKEM byla přidána vyšší bezpečnostní kategorie, i když jeho

výkon zůstává nižší ve srovnání s jinými mřížkovými schématy. Multivariantní algoritmy

jako Rainbow a Great Multivariate Short Signature (GeMSS) byly zjednodušeny a posíleny

proti novým typům útoků.

Druhé kolo zahrnovalo také významné kryptoanalytické výsledky, které ukázaly slabiny

některých návrhů. Například algoritmy Lightweight Authenticated Cipher (LAC), Low

Error Decoding Algorithm Cryptosystem (LEDAcrypt) a Round5 byly eliminovány kvůli

novým útokům nebo nejasnostem v jejich konstrukcích.

Na konci druhého kola bylo vybráno 7 finalistů a 8 alternativních kandidátů pro třetí

kolo.

Tabulka 3 Seznam finalistů do třetího kola

Digitální Podpisy Šifrování a výměna klíčů

CRYSTALS-DILITHIUM Classic McEliece

FALCON CRYSTALS-KYBER

Rainbow NTRU

 SABER

(zdroj: [23])

UTB ve Zlíně, Fakulta aplikované informatiky 27

Tabulka 4 Seznam alternativních kandidátů do třetího kola

Digitální Podpisy Šifrování a výměna klíčů

GeMSS BIKE

Picnic FrodoKEM

SPHINCS+ NTRU Prime

 HQC

 SIKE

(zdroj: [23])

2.3 Třetí kolo standardizačního procesu

Hlavním úkolem ve třetím kole standardizačního procesu [12], které probíhalo od července

2020 do července 2022, bylo dokončit analýzu finalistů a určit první standardizované

algoritmy.

Toto kolo se soustředilo na detailní hodnocení finalistů a alternativních kandidátů

z druhého kola. Zaměření bylo na bezpečnostní analýzu, zahrnující odolnost vůči nově

objeveným útokům, a na hodnocení výkonu, které zahrnovalo testování na různých

platformách. Významnou roli hrála zpětná vazba odborné kryptografické komunity, která

poskytla nové poznatky a analýzy.

Na základě výsledků třetího kola byly vybrány první algoritmy, které budou

standardizovány, a současně byly definovány další kroky, včetně pokračování čtvrtého kola

pro některé kategorie algoritmů. Tento proces stanovil základní standardy pro post

kvantovou kryptografii, které budou implementovány do širokého spektra aplikací.

2.3.1 Hodnotící kritéria

Ve třetím kole standardizačního procesu NIST PQC byla bezpečnost hlavním kritériem

hodnocení, protože algoritmy musely prokázat odolnost proti klasickým i kvantovým

útokům a splnit požadavky na bezpečnost v pěti definovaných kategoriích. Mřížkové

algoritmy, jako například CRYSTALS-KYBER a CRYSTALS-DILITHIUM, dosáhly

vynikajících výsledků díky své robustnosti vůči kryptoanalytickým metodám, jako je

redukce mřížky prostřednictvím algoritmu Block Korkine–Zolotarev (BKZ). Tyto testy

potvrdily jejich stabilitu parametrů i při aplikaci optimalizovaných útoků.

28 UTB ve Zlíně, Fakulta aplikované informatiky

Naopak multivariantní algoritmy, například Rainbow, selhaly při testech zaměřených

na algebraické redukce, které umožnily efektivní prolomení jejich bezpečnostních základů.

Podobně algoritmus BIKE čelil problémům s odolností vůči postranním kanálům, zejména

s chybami při dešifrování, což vedlo ke snížení důvěry v jeho praktickou implementaci.

Důkladné kryptoanalytické analýzy zahrnovaly také ověřování deklarovaných

bezpečnostních kategorií, což v některých případech odhalilo, že parametry některých

návrhů byly nastaveny příliš optimisticky. Tyto nálezy vedly buď k úpravám parametrů,

nebo k eliminaci algoritmů, které nedokázaly splnit požadované standardy. Výsledky těchto

testů zásadně ovlivnily výběr finalistů a ukázaly, že robustnost vůči široké škále útoků je

klíčovým faktorem pro budoucí standardizaci.

Druhým hlavním kritériem při hodnocení byl výkon a náklady při reálném nasazení

jednotlivých algoritmů. Posuzovaly se faktory, jako jsou velikost klíčů, šifrovaných textů

a podpisů, rychlost operací (např. šifrování, dešifrování, generování klíčů) a nároky na

paměť. Testy byly prováděny na různých platformách, aby se ukázala flexibilita algoritmů

při různých scénářích použití, od výkonných serverů až po zařízení s velmi omezeným

výkonem, jako jsou zařízení internetu věcí (IoT).

První graf (Obrázek 4) zobrazuje výkonovou náročnost několika algoritmů pro

šifrování a výměnu klíčů na x86-64 procesorech s Advanced Vector Extensions 2 (AVX2)

rozšířeními. Zobrazené algoritmy, jako jsou KYBER, SABER a varianty NTRU, byly

hodnoceny na základě výpočetní náročnosti tří hlavních operací: generování klíčů,

zapouzdření a odpouzdření.

Z výsledků je zřejmé, že algoritmy rodiny CRYSTALS-KYBER dosahují nejlepších

výkonů jak v bezpečnostní úrovni 1 (KYBER512), tak v úrovni 3 (KYBER768). Algoritmy

z rodiny SABER (LightSaber, Saber) si rovněž vedou velmi dobře a ve většině operací se

přibližují výkonu CRYSTALS-KYBER. Naopak algoritmy NTRU (ntruhps2048677,

ntruhrss701, ntruhps4096821) dosahují nejpomalejších výsledků, přičemž největší zátěž

představuje operace generování klíčů, zatímco operace zapouzdření a odpouzdření dosahují

srovnatelných časů s ostatními algoritmy.

UTB ve Zlíně, Fakulta aplikované informatiky 29

Obrázek 4 Graf výkonnostní testy KEM algoritmů na x86-64 procesorech s rozšířeními

AVX2

(zdroj: [12])

V druhém grafu (Obrázek 5) jsou zobrazeny výkonnostní testy algoritmů pro digitální

podpisy na x86-64 procesorech s AVX2 rozšířeními. Graf zobrazuje počet hodinových cyklů

pro klíčové operace vytvoření podpisu a jeho ověření u různých variant algoritmů FALCON

a CRYSTALS-DILITHIUM.

Z grafu je patrné, že algoritmy rodiny CRYSTALS-DILITHIUM jsou obecně

efektivnější z hlediska klíčových operací. Například při porovnání algoritmů na úrovni

zabezpečení Level 5 vykazuje CRYSTALS-DILITHIUM nižší výpočetní náročnost

ve srovnání s algoritmem FALCON-1024, což z něj činí rychlejší volbu pro aplikace, kde je

důležitý výkon.

0

100000

200000

300000

400000

500000

600000

Počet taktů

(clock cycles)

Algoritmus

Výkonnostní testy KEM algoritmů na x86-64 procesorech s

rozšířeními AVX2

Generování klíčů Zapouzdření Odpouzdření

30 UTB ve Zlíně, Fakulta aplikované informatiky

Obrázek 5 Graf výkonnostní testy algoritmů pro digitální podpisy na x86-64

procesorech s AVX2 rozšířeními

(zdroj: [12])

V testech na pomalejších procesorech, jako je Advanced RISC Machine (ARM)

Cortex-M4, si z KEM algoritmů vedl nejlépe CRYSTALS-KYBER, který prokázal nízké

paměťové nároky a rychlé operace i na platformách s omezeným výkonem. Algoritmy

SABER dosáhl podobně dobrých výsledků a ukázal se jako efektivní alternativa. Naopak

algoritmus NTRU, jak již bylo možné odhadovat z výsledků na výkonnějších procesorech,

vykazoval na pomalejších zařízeních výrazně vyšší výpočetní náročnost, zejména při

generování klíčů, což jej činí méně vhodným pro zařízení s omezenými zdroji.

U algoritmů pro digitální podpisy si lépe vedly algoritmy rodiny CRYSTALS-

DILITHIUM, především na bezpečnostních úrovních 2 a 3, kde prokázaly dobrou rovnováhu

0

200000

400000

600000

800000

1000000

1200000

Algoritmus

Výkonnostní testy algoritmů pro digitální podpisy na x86-64

procesorech s AVX2 rozšířeními

Podepisování Ověřování

Počet taktů

(clock cycle)

UTB ve Zlíně, Fakulta aplikované informatiky 31

mezi bezpečností a výkonem. Naproti tomu algoritmus FALCON-512, který odpovídá

bezpečnostní úrovni 1, vyžadoval na pomalejším procesoru více času na vykonání operací,

zejména při podepisování, což může omezit jeho využití v prostředích s omezeným

výkonem.

Třetím klíčovým kritériem hodnocení byly charakteristiky algoritmů a jejich

implementace, včetně jednoduchosti designu, flexibility nasazení a odolnosti vůči útokům

postranními kanály. Mezi KEM algoritmy si CRYSTALS-KYBER vedl výborně díky své

přehledné konstrukci a nízkým nárokům na implementaci, což jej činí vhodným pro širokou

škálu zařízení. SABER dosáhl obdobně dobrých výsledků, přičemž jeho stabilní výkon

a nízké paměťové nároky jej činí univerzální volbou.

U digitálních podpisů vynikl CRYSTALS-DILITHIUM, který díky modulárnímu

designu a dobré rovnováze mezi výkonem a jednoduchostí implementace získal vysoké

hodnocení. SPHINCS+ byl vyzdvihován za svou inherentní odolnost vůči útokům

postranními kanály díky hashovacímu základu. Naopak algoritmus Classic McEliece u KEM

a FALCON u digitálních podpisů čelily problémům s implementací, zejména kvůli velké

velikosti klíčů nebo vyšším paměťovým nárokům.

2.3.2 Výsledky třetího kola

Ve třetím kole standardizačního procesu byly vybrány celkem čtyři algoritmy

ke standardizaci. Z algoritmů určených pro šifrování a výměnu klíčů byl vybrán

CRYSTALS-KYBER, který vynikl svou vysokou bezpečností, vynikajícím výkonem a

flexibilitou implementace, což jej činí ideální volbou pro široké nasazení.

Mezi algoritmy pro digitální podpisy byly vybrány tři kandidáty. CRYSTALS-

DILITHIUM byl označen za primární volbu díky vynikající rovnováze mezi bezpečností,

výkonem a jednoduchostí implementace. FALCON se ukázal jako vhodná volba pro

aplikace vyžadující menší velikost podpisů, čímž snižuje náklady na přenos dat. Naopak

SPHINCS+ byl vybrán díky své unikátní odolnosti vůči postranním kanálům, kterou

zajišťuje jeho hashovací základ, což z něj činí robustní volbu pro specifické aplikace. NIST

plánuje vydat pro tyto algoritmy drafty.

32 UTB ve Zlíně, Fakulta aplikované informatiky

Tabulka 5 Seznam algoritmů určených ke standardizaci

Digitální Podpisy Šifrování a výměna klíčů

CRYSTALS-DILITHIUM CRYSTALS-KYBER

FALCON

SPHINCS+

(zdroj: [12])

Některé algoritmy byly ve třetím kole z procesu standardizace zcela vyřazeny, protože

neprokázaly dostatečnou bezpečnost, výkon nebo implementační vlastnosti. Mezi vyřazené

patří například Rainbow, který byl eliminován kvůli zásadním kryptoanalytickým útokům

zpochybňujícím jeho bezpečnostní základy, a GeMSS, jenž selhal při analýze odolnosti vůči

kryptoanalýze. Dále byl vyřazen NTRUEncrypt, jehož výkon a složitost implementace

neobstály v porovnání s ostatními kandidáty.

Jiné algoritmy, přestože nebyly přímo vybrány ke standardizaci, postoupily do čtvrtého

kola pro další hodnocení. Mezi ně patří například BIKE, Classic McEliece, HQC a SIKE,

které nabízejí různé přístupy, jako jsou kódově založené systémy nebo isogenie. Tyto

algoritmy budou dále analyzovány, aby bylo možné určit jejich případnou budoucí

standardizaci.

Tabulka 6 Seznam kandidátů do čtvrtého

kola

Šifrování a výměna klíčů

BIKE

Classic McEliece

SIKE

HQC

(zdroj: [12])

UTB ve Zlíně, Fakulta aplikované informatiky 33

3 NIST STANDARDY

Ve standardizačním procesu postkvantových kryptografických algoritmů, který vedl NIST,

byly vybrány čtyři algoritmy, které jsou určeny ke standardizaci. Tento proces byl zahájen

v roce 2016 jako odpověď na rostoucí hrozbu kvantových počítačů, které by mohly prolomit

současné asymetrické kryptografické systémy.

V srpnu 2024 NIST zveřejnil první tři finální standardy pro šifrování a výměnu klíčů,

přičemž čtvrtý algoritmus, určený pro digitální podpisy, stále prochází dokončovací fází

standardizace. Tyto algoritmy budou tvořit základ budoucích kryptografických systémů,

které mají zajistit ochranu citlivých dat i v éře kvantových počítačů.

NIST zároveň důrazně doporučuje organizacím a správcům systémů, aby co nejdříve

začali implementovat nové standardy a připravili se na postkvantovou éru.[24]

3.1 FIPS 203

Standard FIPS 203 definuje Module-Lattice-Based Key-Encapsulation Mechanism (ML-

KEM) [9], který byl vybrán jako postkvantový standard pro bezpečnou výměnu klíčů. ML-

KEM vychází z algoritmu CRYSTALS-KYBER, jednoho z finalistů třetího kola

standardizačního procesu NIST PQC. Tento mechanismus je navržen tak, aby poskytoval

odolnost vůči kvantovým útokům, které by mohly prolomit současné asymetrické

kryptografické systémy. ML-KEM je založen na mřížkové kryptografii, konkrétně na

problému Module Learning with Errors (MLWE), což je jedna z nejvýznamnějších tříd

postkvantových kryptografických problémů, u kterých se předpokládá odolnost vůči

kvantovým algoritmům.

3.1.1 Varianty

Standard FIPS 203 definuje tři varianty ML-KEM: ML-KEM-512, ML-KEM-768, ML-

KEM-1024, které se liší úrovní bezpečnosti, velikostí klíčů a šifrovaných textů. Každá

varianta je navržena tak, aby poskytovala různou rovnováhu mezi bezpečností a výkonem,

přičemž vyšší číslo v názvu odpovídá vyšší úrovni bezpečnosti.

Pro všechny varianty jsou společné pouze dvě konstanty, a to konstanta n = 256, která

udává dimenzionalitu polynomů v mřížkovém prostoru, a konstanta q = 3329, což je

modulární prvočíslo, které umožňuje rychlé výpočty pomocí Number-Theoretic Transform

(NTT).

34 UTB ve Zlíně, Fakulta aplikované informatiky

Jednotlivé varianty algoritmu ML-KEM se liší hodnotami několika klíčových

parametrů, které ovlivňují jejich bezpečnostní úroveň, výpočetní náročnost a velikost

výsledných dat. Parametr k určuje dimenzionalitu matic používaných při generování klíčů

a šifrování – vyšší hodnota zvyšuje bezpečnost, ale zároveň zvětšuje klíče a šifrovaný text.

Parametr η₁ určuje rozsah pro výběr náhodných vektorů při generování klíče, zatímco

η₂ definuje rozsah šumových vektorů používaných během šifrování. Oba parametry

ovlivňují náhodnost a tím i odolnost proti útokům. Parametry dᵤ a dᵥ slouží k bitové kompresi

šifrovaného textu – určují, jak velká část výsledku bude při šifrování a dešifrování

zachována. Vyšší hodnoty těchto parametrů vedou k větší přesnosti a bezpečnosti, ale mohou

negativně ovlivnit výkon. Přehled konkrétních hodnot pro jednotlivé varianty je uveden

v následující tabulce (Tabulka 7).

Tabulka 7 Porovnání parametrů jednotlivých variant FIPS 203

Varianta k η₁ η₂ dᵤ dᵥ

ML-KEM-512 2 3 2 10 4

ML-KEM-768 3 2 2 10 4

ML-KEM-1024 4 2 2 11 5

(zdroj: [9])

Na základě rozdílů v konstrukčních parametrech jednotlivých variant, se liší také výsledné

velikosti veřejného a soukromého klíče i velikost zapouzdřeného klíče. Vyšší bezpečnostní

kategorie zpravidla vyžadují větší matice a delší šumové vektory, což vede k většímu objemu

dat. Velikost zapouzdření označuje počet bajtů potřebných pro předání šifrovaného výstupu,

který slouží k bezpečné distribuci sdíleného tajemství při výměně klíče. Přehled těchto

hodnot je uveden v následující tabulce (Tabulka 8).

UTB ve Zlíně, Fakulta aplikované informatiky 35

Tabulka 8 Porovnání variant FIPS 203

Varianta Bezpečnostní

kategorie

Úroveň

Bezpečnosti

(bits)

Velikost klíčů

(B)

Velikost

zapouzdření

(B)

ML-KEM-512 Kategorie 1 128 2432 768

ML-KEM-768 Kategorie 3 192 3584 1088

ML-KEM-1024 Kategorie 5 256 4736 1568

(zdroj: [9])

3.1.2 KEM Mechanismus

Mechanismus KEM definovaný ve FIPS 203 poskytuje bezpečný způsob pro výměnu

šifrovacích klíčů v asymetrických kryptosystémech. Proces fungování ML-KEM se skládá

ze tří hlavních fází: generování klíčů, zapouzdření klíče a odpouzdření klíče.

Obrázek 6 Zjednodušené schéma KEM

(zdroj: [9])

36 UTB ve Zlíně, Fakulta aplikované informatiky

3.1.3 Tvorba klíčů

Prvním krokem při implementaci algoritmu ML-KEM podle standardu FIPS 203 je

vytvoření klíčového páru skládajícího se z veřejného klíče (ek) a soukromého klíče (dk).

Tento proces zajišťuje funkce ML-KEM.KeyGen(), která nejprve vygeneruje dvě 32bajtové

náhodné hodnoty d a z, a následně je předá interní funkci ML-KEM.KeyGen_internal() pro

vlastní generaci klíčového páru.

Hodnota d slouží jako počáteční vstup pro generování klíčových komponent, zatímco

hodnota z je součástí soukromého klíče a přispívá k bezpečnosti odpouzdření. Obě hodnoty

jsou generovány tak, aby byly unikátní pro každou instanci, čímž je zajištěna odolnost vůči

útokům založeným na opakovaném použití klíčů. Interní funkce následně deterministicky

generuje veřejný a soukromý klíč.

Veřejný klíč obsahuje pouze šifrovací klíč pro schéma veřejného klíčového šifrování

s externím klíčem (Keyed Public-Key Encryption, K-PKE), který je vytvořen pomocí funkce

K-PKE.KeyGen(). Tento šifrovací klíč zahrnuje veřejnou počáteční hodnotu 𝜌, jenž slouží

k deterministické regeneraci matice A, a vektor t, vypočítaný jako t = As + e, kde s je tajný

vektor a e šumový vektor. Oba vektory jsou vzorkovány z binomického rozdělení (CBD).

Díky použití počáteční hodnoty 𝜌 není nutné ukládat celou matici A, protože ji lze kdykoli

zpětně rekonstruovat.

Soukromý klíč obsahuje několik klíčových prvků nezbytných pro bezpečné

odpouzdření. Zahrnuje dešifrovací klíč specifický pro schéma K-PKE (dkPKE), který

obsahuje tajný vektor s transformovaný do NTT domény pro efektivní výpočty, dále kopii

veřejného klíče ek, hash veřejného klíče H(ek) sloužící k ověřování integrity a náhodnou

hodnotu z, která funguje jako ochranný mechanismus při odpouzdření – v případě, že

odpouzdření selže, algoritmus místo skutečného tajného klíče vrátí náhodnou hodnotu, čímž

zvyšuje bezpečnost celého procesu.

3.1.4 Proces zapouzdření

Po vygenerování klíčového páru následuje proces zapouzdření, jehož cílem je bezpečně

přenést sdílený tajný klíč mezi dvěma stranami. Tento proces využívá veřejný klíč

k vytvoření šifrované zprávy a sdíleného tajného klíče K, který je následně použit pro

zabezpečenou komunikaci.

UTB ve Zlíně, Fakulta aplikované informatiky 37

Zapouzdření je realizováno voláním algoritmu ML-KEM.Encaps(). Než zapouzdření

proběhne, je nejprve provedena kontrola platnosti veřejného klíče. Tato kontrola zahrnuje

ověření, zda veřejný klíč má správnou délku 384k + 32 bajtů podle specifikovaného

parametru, a dále tzv. modulární kontrolu, která ověřuje, že zakódované hodnoty leží

ve správném rozsahu [0, q–1]. Tento krok je důležitý pro detekci potenciálně neplatných

nebo podvržených veřejných klíčů. Teprve po úspěšném dokončení těchto kontrol je možné

přistoupit k samotnému zapouzdření.

Vlastní proces zapouzdření je realizován interním algoritmem

ML-KEM.Encaps_internal(), kde m představuje nově vygenerovanou 32bajtovou náhodnou

hodnotu. Nejprve se vytvoří hash veřejného klíče H(ek), který je spolu s hodnotou m spojen

a zpracován pomocí hashovací funkce G(). Výstupem tohoto kroku je sdílený tajný klíč

K a náhodná hodnota r použitá pro šifrování. Pomocí algoritmu K-PKE.Encrypt() je

následně hodnota m zašifrována a vznikne šifrovaný text c.

Výsledkem celého procesu je dvojice (c, K), kde c je zašifrovaný text určený k odeslání

příjemci a K je sdílený tajný klíč, který bude následně použit pro šifrovanou komunikaci.

Díky této konstrukci není tajný klíč nikdy přenášen přímo, což výrazně zvyšuje odolnost

systému proti odposlechu a dalším útokům.

3.1.5 Proces odpouzdření

Po přijetí šifrovaného textu c následuje proces odpouzdření, jehož cílem je rekonstruovat

původní sdílený tajný klíč pomocí soukromého klíče. Tento proces je realizován voláním

algoritmu ML-KEM.Decaps() a zajišťuje, že komunikace zůstane důvěrná i v případě

přenosu po nezabezpečeném kanálu.

Proces odpouzdření začíná extrakcí klíčových komponent ze soukromého klíče. Tyto

komponenty zahrnují dešifrovací klíč K-PKE (dkPKE), který slouží k přímému dešifrování

šifrovaného textu, dále kopii veřejného klíče ek, hash veřejného klíče H(ek) pro ověřovací

operace a náhodnou hodnotu z, která se používá jako ochranný mechanismus v případě

neúspěšného odpouzdření.

Následuje samotné dešifrování šifrovaného textu pomocí algoritmu K-PKE.Decrypt().

Tento krok rekonstruuje hodnotu m’, která by měla odpovídat původně zapouzdřené hodnotě

m. Z této hodnoty m’ je poté pomocí hashovací funkce odvozen kandidátní sdílený tajný klíč

K’. Současně se vygeneruje nová verze šifrovaného textu c’ na základě dešifrované hodnoty

m’ a uloženého veřejného klíče ek.

38 UTB ve Zlíně, Fakulta aplikované informatiky

V dalším kroku je provedeno ověření integrity tím, že se porovná přijatý šifrovaný text

c s nově vygenerovaným šifrovaným textem c’. Pokud se hodnoty c a c’ shodují, je

odpouzdření považováno za úspěšné a vrácen je vypočítaný sdílený tajný klíč K’. Pokud

však dojde k nesouladu, což může být důsledkem podvrženého nebo poškozeného

šifrovaného textu, je místo skutečného klíče vrácena hodnota odvozená z náhodné hodnoty

z. Tento mechanismus zajišťuje, že odpouzdření je bezpečné i v případě aktivních útoků.

Takto navržený proces odpouzdření poskytuje vysokou úroveň bezpečnosti a zároveň

zachovává efektivitu, což je klíčové pro praktické nasazení v prostředích vyžadujících

kvantově odolné zabezpečení.

3.1.6 Implementace a využití

Implementace ML-KEM podle standardu FIPS 203 musí splňovat přísné požadavky

stanovené NIST, aby byla zajištěna kompatibilita a bezpečnost v kryptografických

systémech. Implementace musí odpovídat schváleným postupům pro generování náhodných

hodnot, šifrování a výměnu klíčů, přičemž podléhá federálním regulačním požadavkům.

NIST plánuje vytvořit validační program, který umožní ověřit, zda konkrétní implementace

splňuje všechny požadavky standardu. Tento program bude klíčový pro certifikaci

kryptografických produktů, které využívají ML-KEM v reálných aplikacích.

Mezi klíčové oblasti využití ML-KEM patří federální informační systémy, kde zajišťuje

zabezpečenou komunikaci a ochranu citlivých dat. V průmyslovém a komerčním sektoru se

používá k šifrování databází, zabezpečení cloudu a hybridních postkvantových řešeních. Je

také vhodný pro zařízení s omezenými zdroji, jako IoT a vestavěné systémy, kde nabízí

varianty s nízkou výpočetní náročností. Dále se uplatňuje v protokolu Transport Layer

Security (TLS), virtuálních privátních sítích (VPN – Virtual Private Network) a dalších

bezpečnostních protokolech., kde nahrazuje RSA a ECC, jež jsou zranitelné vůči kvantovým

útokům.

NIST doporučuje jako výchozí variantu ML-KEM-768, protože poskytuje vyvážený

poměr mezi bezpečností a výkonem, a je tedy vhodná pro většinu aplikací. Varianta

ML-KEM-512 je určena výhradně pro zařízení s omezenými výpočetními zdroji, kde je

prioritou rychlost a nízké nároky na paměť, avšak její bezpečnostní úroveň je nižší. Naopak

ML-KEM-1024, i když nabízí nejvyšší úroveň ochrany, je kvůli větší velikosti klíčů,

zašifrovaných textů a vyšším výpočetním požadavkům považována za příliš náročnou pro

běžné použití a vhodná spíše pro kritické aplikace s nejvyššími bezpečnostními požadavky.

UTB ve Zlíně, Fakulta aplikované informatiky 39

3.2 FIPS 204

Standard FIPS 204 definuje algoritmus Module-Lattice-Based Digital Signature Algorithm

(ML-DSA) [10], který poskytuje bezpečný způsob pro vytváření a ověřování digitálních

podpisů. Tento algoritmus je navržen jako odolný vůči kvantovým útokům a je postaven na

mřížkové kryptografii, konkrétně na problému MLWE – stejném problému, na kterém je

založen i standard FIPS 203.

ML-DSA vychází z algoritmu CRYSTALS-Dilithium, jenž byl vybrán jako vítězný

kandidát třetího kola standardizačního procesu NIST v kategorii digitálních podpisů.

Algoritmus ML-DSA umožňuje vytváření a ověřování digitálních podpisů pomocí

asymetrické kryptografie. Pomocí soukromého klíče lze podepsat digitální zprávu, přičemž

pravost podpisu může následně ověřit kdokoli, kdo má k dispozici odpovídající veřejný klíč.

Tento mechanismus zajišťuje integritu a autenticitu podepsaných dat

3.2.1 Varianty

Standard FIPS 204 definuje tři varianty algoritmu ML-DSA: ML-DSA-44,

ML-DSA-65 a ML-DSA-87. Každá z těchto variant odpovídá jiné bezpečnostní kategorii

a nabízí jiný kompromis mezi úrovní ochrany, výpočetní náročností a velikostí klíčových

dat. Díky tomu je možné algoritmus nasadit v široké škále scénářů – od omezených zařízení

až po kritickou infrastrukturu. Všechny varianty navíc podporují dva režimy

podepisování: běžný deterministický režim a tzv. zabezpečený (hedged) režim, který

kombinuje interní a externí náhodnost a zvyšuje odolnost algoritmu vůči selhání generátoru

náhodných čísel.

Všechny tři varianty využívají stejné základní parametry, které definují kryptografické

prostředí algoritmu. Jedním z těchto parametrů je modul q, ve kterém probíhají všechny

výpočty – operace se tedy provádějí v kruhu Zq, kde q = 8380417. Dále je to parametr ζ, což

je odmocnina jednotky používaná v rámci NTT, která je klíčová pro efektivní násobení

polynomů. V tomto případě je ζ = 1753, což je 512. odmocnina jednotky v Zq. Třetím

společným parametrem je d, což je počet bitů, které se odstraňují z hodnoty t během podpisu

tento krok slouží ke kompresi podpisu a zmenšení výsledných dat. Hodnota parametru d je

pro všechny varianty rovna 13.

Naopak v ostatních parametrech se jednotlivé varianty liší. Patří sem zejména rozměry

matic k a l, které určují velikost mřížky a mají přímý vliv na bezpečnost a velikost klíčových

40 UTB ve Zlíně, Fakulta aplikované informatiky

dat. Dále se liší parametr η, který určuje rozsah hodnot pro generování tajného klíče – vyšší

hodnota znamená větší šum, což zvyšuje bezpečnost, ale i výpočetní náročnost. Parametr ω

pak udává maximální počet nenulových koeficientů v nápovědě h, čímž ovlivňuje velikost

podpisu a rychlost jeho ověřování. Dalším odlišujícím parametrem je τ, což je počet

nenulových prvků (±1) ve vektoru výzvy c, který se používá při ověřování podpisu.

Parametry γ₁ a γ₂ určují rozsah koeficientů pro hodnoty y a pro nízkořádové zaokrouhlování

během výpočtů – ovlivňují tedy přesnost operací i odolnost vůči útokům. Konkrétní hodnoty

těchto parametrů jsou uvedeny v následující tabulce (Tabulka 9).

Tabulka 9 Porovnání parametrů jednotlivých variant FIPS 204

Varianta (k, l) 𝜂 𝜔 τ γ₁ γ₂

ML-DSA-44 (4, 4) 2 80 39 217 (q-1) /88

ML-DSA-65 (6, 5) 4 55 49 219 (q-1) /32

ML-DSA-87 (8, 7) 2 75 60 219 (q-1) /32

(zdroj: [10])

Na základě rozdílů v konstrukčních parametrech jednotlivých variant a jejich přiřazení

k různým bezpečnostním kategoriím se liší také výsledné velikosti klíčů a podpisů. Vyšší

bezpečnostní úroveň zpravidla znamená větší rozměry matic a přísnější parametry šumu, což

vede k nárůstu velikosti veřejného i soukromého klíče a delšímu podpisu.

Tabulka 10 Porovnání variant FIPS 204

Varianta Bezpečnostní

kategorie

Úroveň

Bezpečnosti

(bits)

Velikost klíčů

(B)

Velikost

podpisu

(B)

ML-DSA-44 Kategorie 2 128 3872 2420

ML-DSA-65 Kategorie 3 192 5984 3309

ML-DSA-87 Kategorie 5 256 7488 4627

(zdroj: [10])

3.2.2 Tvorba klíčů

První fází algoritmu ML-DSA je generování klíčového páru, které začíná voláním

funkce ML-DSA.KeyGen(), která vrací veřejný a soukromý klíč. Nejprve se vygeneruje

32bajtový náhodná hodnota 𝜉, který slouží jako základ pro odvození všech potřebných

UTB ve Zlíně, Fakulta aplikované informatiky 41

klíčových komponent. Tato hodnota je vstupem do interní funkce

ML-DSA.KeyGen_internal(), která z něj deterministicky vytvoří trojici hodnot: 32bajtovou

veřejnou počáteční hodnotu 𝜌, 64bajtovou soukromou počáteční hodnotu 𝜌′ a 32bajtovou

pomocnou hodnotu K určenou pro proces podepisování.

Veřejný počáteční hodnota 𝜌 slouží k deterministickému generování matice A

reprezentované v NTT doméně, která se používá při výpočtu veřejného vektoru. Ze

soukromé hodnoty 𝜌′ jsou následně vytvořeny dva tajné vektory s₁ a s₂ s krátkými koeficienty

omezenými na rozsah [−𝜂, 𝜂]. Následně se spočítá vektor t = A s₁ + s₂, který se dále rozdělí

pomocí funkce Power2Round() na komprimovanou veřejnou část t1 a tajnou část t0

obsahující dolní bity koeficientů.

Veřejný klíč (public key, pk), který slouží pro ověřování podpisu, je reprezentován jako

binární řetězec obsahující veřejnou počáteční hodnotu ρ a komprimovaný vektor t₁.

Soukromý klíč (secrete key, sk) je tvořen následujícími komponentami: veřejnou počáteční

hodnotou ρ, pomocnou počáteční hodnotou K, 64bajtovým hashem veřejného klíče tr,

tajnými vektory s₁ a s₂ a vektorem t₀. Tato struktura zajišťuje, že všechny potřebné informace

pro bezpečné a efektivní podepisování jsou obsaženy přímo v soukromém klíči, bez nutnosti

dodatečných vstupů.

3.2.3 Proces podepisování

Druhou fází algoritmu ML-DSA je vytvoření podpisu zprávy pomocí soukromého klíče.

Tento proces zajišťuje funkce ML-DSA.Sign(), která přijímá soukromý klíč, podepisovanou

zprávu a volitelný kontextový řetězec. Pokud je délka kontextu větší než 255 bajtů,

algoritmus vrací chybu. Jinak je vygenerována 32bajtová náhodná hodnota rnd. V základní

zabezpečené variantě je získána z kryptografického generátoru, zatímco v deterministické

variantě je nahrazena nulovým řetězcem.

Před vlastním podepisováním je původní zpráva rozšířena o informace o délce a obsahu

kontextu a následně zakódována do bitového řetězce. Takto připravená zpráva M‘, spolu

s náhodnou hodnotou rnd a soukromým klíčem sk, je následně předána do interní funkce

ML-DSA.Sign_internal().

Tato funkce provádí samotný výpočet podpisu nad zprávou a soukromým klíčem. Jde

o hlavní kryptografickou část podepisování, která probíhá buď v náhodné nebo

deterministické variantě. Obě verze využívají stejné postupy, liší se pouze v tom, zda je při

každém podpisu použita čerstvá náhodná hodnota.

42 UTB ve Zlíně, Fakulta aplikované informatiky

Nejprve se ze soukromého klíče získají všechny potřebné komponenty: veřejný

počáteční hodnota ρ, tajné hodnoty K, s₁, s₂, t₀ a hash veřejného klíče. Z těchto hodnot se

zkonstruuje interní reprezentace zprávy, která se spolu s náhodností použije k vytvoření

privátního náhodné počáteční hodnoty pro daný podpis.

Podpis se generuje v takzvané smyčce s opakováním vzorkování (rejection sampling),

která opakovaně vytváří návrhy podpisů a kontroluje jejich platnost. Nejprve je náhodně

vygenerován vektor y, z něj se spočítá takzvaný závazek w₁, který slouží jako základ pro

vytvoření výzvy c, ta je odvozena z kombinace w₁ a zprávy. Poté se vypočítá podpisová

hodnota z = y + cs₁. Pokud z nebo další odvozené hodnoty překračují definované limity,

návrh je zamítnut a celý postup se opakuje.

Jakmile jsou všechny podmínky splněny, algoritmus dopočítá takzvanou nápovědu h,

která slouží k ověření podpisu bez nutnosti znát tajné části klíče. Výsledný podpis je složen

z trojice hodnot: výzva c, podpisová hodnota z a nápověda h. Tyto části jsou zakódovány do

bajtového řetězce a vráceny jako finální podpis.

3.2.4 Proces ověřování

Závěrečným krokem algoritmu ML-DSA je ověření platnosti podpisu pomocí veřejného

klíče. Tuto operaci zajišťuje funkce ML-DSA.Verify(), která jako vstup přijímá veřejný klíč,

podepsanou zprávu, podpis a volitelný kontext. Pokud je délka kontextu příliš velká,

algoritmus ihned vrací chybu. V opačném případě je zpráva zformátována do

standardizované podoby a spolu s veřejným klíčem a podpisem předána do funkce

ML-DSA.Verify_internal().

Interní ověřovací algoritmus provede veškeré potřebné kontroly. Nejprve rozkóduje

veřejný klíč a podpis a z nich získá potřebné komponenty – zejména závazek, podpisovou

hodnotu a tzv. nápovědu h, která slouží k rekonstruování závazku během ověřování bez

znalosti tajných hodnot. Dále rekonstruuje závazek podepisující strany a znovu vygeneruje

výzvu, která by měla odpovídat té původní, obsažené v podpisu. Zároveň provádí kontrolu

velikosti koeficientů v podpisové hodnotě a ověřuje, že nápověda obsahuje přípustný počet

nenulových prvků.

Pokud všechny ověřovací podmínky proběhnou úspěšně a znovu vypočtená výzva

odpovídá té původní, funkce vrací hodnotu „TRUE“, tedy že podpis je platný. V opačném

případě vrací „FALSE“.

UTB ve Zlíně, Fakulta aplikované informatiky 43

3.2.5 Implementace a využití

Implementace ML-DSA podle standardu FIPS 204 musí splňovat přísné požadavky

stanovené NIST s cílem zajistit kompatibilitu, bezpečnost a odolnost vůči kvantovým

útokům. Každá implementace musí přesně odpovídat definovaným postupům pro

generování klíčů, podepisování a ověřování podpisů.

NIST plánuje vytvořit validační program, který umožní ověřit, zda konkrétní

implementace splňuje všechny požadavky standardu. Tento program bude klíčový pro

certifikaci kryptografických produktů využívajících ML-DSA v reálných aplikacích, včetně

ochrany citlivých dat a zabezpečení komunikačních kanálů.

NIST doporučuje jako výchozí variantu ML-DSA-65, protože poskytuje vyvážený

poměr mezi bezpečností a výkonem. Varianta ML-DSA-44 je určena pro aplikace

s omezenými výpočetními zdroji, kde je prioritou rychlost a nízké nároky na paměť. Naopak

ML-DSA-87 je navržena pro kritické aplikace s nejvyššími bezpečnostními požadavky, ale

kvůli větší velikosti podpisů a vyšší výpočetní náročnosti je méně vhodná pro běžné použití.

3.3 FIPS 205

Standard FIPS 205 definuje Stateless Hash-Based Digital Signature Algorithm (SLH-DSA)

[14], který byl vybrán jako alternativní postkvantový standard pro bezpečné digitální

podpisy. Tento mechanismus je navržen tak, aby poskytoval odolnost vůči kvantovým

útokům, které by mohly prolomit současné asymetrické kryptografické systémy. SLH-DSA

je založen na hashovacích funkcích, což zajišťuje jeho bezpečnost.

SLH-DSA je odvozen od algoritmu SPHINCS+, který byl jedním z finalistů třetího

kola standardizačního procesu NIST PQC. Hlavní výhodou SLH-DSA je jeho bezstavová

povaha – na rozdíl od jiných hash-based podpisových schémat, jako je například eXtended

Merkle Signature Scheme (XMSS), nepotřebuje algoritmus vést záznam o vnitřním stavu

mezi jednotlivými podpisy. Tím je odstraněno riziko opětovného použití klíčů, což zvyšuje

bezpečnost a zároveň zjednodušuje implementaci.

3.3.1 Varianty

Standard FIPS 205 definuje několik variant SLH-DSA, které se liší v použitých parametrech,

bezpečnostní úrovni a efektivitě. Standard nabízí ve svých variantách dvě různé hashovací

funkce, a to Secure Hash Algorithm 2 (SHA-2) a SHAKE256. Hashovací funkce SHA-2

představuje klasický přístup používaný v mnoha současných systémech, zatímco

44 UTB ve Zlíně, Fakulta aplikované informatiky

SHAKE256, založený na konstrukci SHA-3, nabízí větší flexibilitu díky možnosti variabilní

délky výstupu.

Kromě volby hashovací funkce se jednotlivé varianty liší také bezpečnostní úrovní.

FIPS 205 specifikuje tři bezpečnostní úrovně. 128bitová bezpečnost, která odpovídá

bezpečnostní kategorii 1, je vhodná pro méně náročné aplikace díky menší velikosti klíčů

a rychlejším výpočtům. 192bitová bezpečnost, spadající do bezpečnostní kategorie 3,

představuje vyvážený kompromis mezi výkonem a úrovní ochrany. Nabízí vyšší odolnost

vůči útokům než 128bitová varianta, přičemž si zachovává přijatelnou velikost podpisu

i výpočetní náročnost. 256bitová bezpečnost, zařazená do bezpečnostní kategorie 5,

poskytuje nejvyšší úroveň ochrany a je určena pro kritické systémy s požadavky na

dlouhodobou bezpečnost i v postkvantovém prostředí. Tato varianta je náročnější na

výpočetní výkon a generuje větší podpisy, ale nabízí maximální kryptografickou odolnost.

Další odlišností mezi variantami je režim provozu algoritmu. Označení „s“ (small)

představuje režim optimalizovaný pro co nejmenší velikost podpisu, zatímco „f“ (fast)

označuje režim zaměřený na co nejvyšší rychlost zpracování. Kombinací těchto tří

bezpečnostních úrovní, dvou typů hashovacích funkcí a dvou režimů provozu vzniká celkem

12 různých variant SLH-DSA, které pokrývají široké spektrum požadavků na bezpečnost

a výkon.

Tabulka 11 Porovnání variant s režimem provozu „s“ FIPS 205

Varianta Bezpečnostní

kategorie

Úroveň

Bezpečnosti

(bits)

Velikost

klíčů

(B)

Velikost

podpisu

(B)

SLH-DSA-SHA2-128s

SLH-DSA-SHAKE-128s

Kategorie 1 128 32 7856

SLH-DSA-SHA2-192s

SLH-DSA-SHAKE-192s

Kategorie 3 192 48 16224

SLH-DSA-SHA2-256s

SLH-DSA-SHAKE-256s

Kategorie 5 256 64 29792

(zdroj: [13])

UTB ve Zlíně, Fakulta aplikované informatiky 45

Tabulka 12 Porovnání variant s režimem provozu „f“ FIPS 205

Varianta Bezpečnostní

kategorie

Úroveň

Bezpečnosti

(bits)

Velikost

klíčů

(B)

Velikost

podpisu

(B)

SLH-DSA-SHA2-128f

SLH-DSA-SHAKE-128f

Kategorie 1 128 32 17088

SLH-DSA-SHA2-192f

SLH-DSA-SHAKE-192f

Kategorie 3 192 48 35664

SLH-DSA-SHA2-256f

SLH-DSA-SHAKE-256f

Kategorie 5 256 64 49856

(zdroj: [13])

3.3.2 Tvorba klíčů

Prvním krokem při implementaci algoritmu SLH-DSA podle standardu FIPS 205 je

vytvoření klíčového páru, který se skládá ze soukromého a veřejného klíče. Soukromý klíč

slouží k podepisování zpráv a musí zůstat důvěrný, zatímco veřejný klíč je určen k ověřování

podpisů a může být volně distribuován.

Generování klíčového páru v algoritmu SLH-DSA je realizováno funkcí slh_keygen(),

která nevyžaduje žádný vstup a vrací dvojici soukromého a veřejného klíče. Prvním krokem

této funkce je náhodné vygenerování tří hodnot: SK.seed, SK.prf a PK.seed. Tyto hodnoty

musí být generovány pomocí schváleného generátoru náhodných bitů, přičemž bezpečnostní

síla tohoto generátoru musí být alespoň 8n bitů, kde n odpovídá velikosti bezpečnostního

parametru (například 16, 24 nebo 32 bajtů podle zvolené varianty).

Hodnota SK.seed slouží k deterministickému generování tajných klíčových komponent

uvnitř dvou vnitřních struktur algoritmu – Forest of Random Subsets (FORS) a XMSS.

Hodnota SK.prf je určena pro deterministické generování náhodné hodnoty, která se používá

při vytváření podpisu. PK.seed představuje veřejnou verzi počáteční hodnoty a používá se

při výpočtu všech veřejných hodnot v rámci schématu. Zajišťuje například oddělení domén

při využívání hashovacích funkcí, což zvyšuje bezpečnost a jednoznačnost výpočtů.

Po úspěšném vytvoření těchto hodnot funkce slh_keygen() volá vnitřní proceduru

slh_keygen_internal(SK.seedm SK.prf, PK.seed), která vypočítá kořen PK.root vrchní

vrstvy XMSS hypertree.

46 UTB ve Zlíně, Fakulta aplikované informatiky

Výsledkem generování je klíčový pár, který se skládá ze soukromého a veřejného klíče.

Soukromý klíč (SK) obsahuje hodnoty SK.seed, SK.prf, PK.seed a PK.root, zatímco veřejný

klíč (PK) tvoří dvojice PK.seed a PK.root. Obě složky jsou úzce propojené a navržené tak,

aby umožňovaly efektivní ověřování podpisů bez nutnosti uchovávat rozsáhlé datové

struktury. Tato deterministická konstrukce zaručuje, že celý podpisový systém lze

rekonstruovat pouze na základě několika počátečních hodnot, bez potřeby uchovávat celý

hashový strom. Tento přístup významně usnadňuje implementaci, zejména v prostředích

s omezenými výpočetními nebo paměťovými zdroji.

3.3.3 Proces podepisování

Proces podepisování v algoritmu SLH-DSA je realizován funkcí slh_sign() nebo její

variantou hash_slh_sign(), přičemž v obou případech je hlavní výpočet delegován na interní

funkci slh_sign_internal(). Rozdíl mezi těmito dvěma variantami spočívá v tom, že funkce

slh_sign() očekává jako vstup celou zprávu, zatímco hash_slh_sign() pracuje s již

předzpracovanou hashovanou zprávou. Výběr rozhraní závisí na kontextu použití a platí, že

daný klíčový pár by měl být použit pouze s jednou z těchto funkcí. Podepisování probíhá

deterministicky a skládá se z několika navazujících kroků, které propojují struktury FORS,

Winternitz One-Time Signature Plus (WOTS+) a XMSS do hierarchické struktury

hypertree.

Prvním krokem je vygenerování tzv. randomizéru – náhodného řetězce R pomocí

funkce PRFmsg(), která jako vstup využívá SK.prf a náhodný vstup. Následně je vypočítán

hash zprávy M v kombinaci s hodnotami R, PK.seed a PK.root. Výsledný hash se rozdělí na

tři části: první část vstupuje do FORS schématu, druhá určuje, který XMSS strom

v hyperstromu bude použit, a třetí část specifikuje konkrétní WOTS+ klíč.

Na základě těchto údajů se vytvoří podpis FORS pomocí funkce fors_sign(), přičemž

současně je z podpisových údajů odvozen veřejný klíč FORS. Tento klíč pak vstupuje jako

vstup do vyšší vrstvy – konkrétní XMSS větve. Pro podepsání FORS klíče se v XMSS

použije podpisové schéma WOTS+, které následně využije autentizační cestu k dosažení

kořene stromu. Tento proces se může rekurzivně opakovat v rámci vrstev hyperstromu.

Výsledný podpis se skládá ze tří hlavních částí. První z nich je náhodná hodnota

R - randomizér, která zajišťuje jedinečnost každého podpisu a přispívá k jeho bezpečnosti.

Druhou složkou je FORS podpis, jenž reprezentuje první vrstvu hashového podpisového

schématu a vzniká na základě části hashované zprávy. Třetí částí je takzvaný hyperstrom

UTB ve Zlíně, Fakulta aplikované informatiky 47

podpis, který se skládá z podpisů schématu WOTS+ a příslušných autentizačních cest

v XMSS stromech, jež dohromady tvoří spojení mezi podpisem a kořenem celé hashové

struktury. Celý podpis je zkonstruován jako jeden binární celek a jeho velikost závisí na

zvolených parametrech algoritmu, konkrétně na hloubce hyperstromu, počtu vrstev a typu

použité hashovací funkce.

Obrázek 7 Struktura podpisu SLH-DSA v hierarchii hyperstrom

(zdroj: [13])

3.3.4 Proces ověřování

Proces ověřování podpisu v algoritmu SLH-DSA je realizován funkcí slh_verify() nebo její

variantou hash_slh_verify(), přičemž v obou případech se ověřovací operace předává interní

funkci slh_verify_internal(). Stejně jako u podepisování funkce slh_verify() pracuje

s původní zprávou, zatímco hash_slh_verify() očekává již vytvořený hash zprávy. Výběr

závisí na kontextu aplikace a použití odpovídající varianty musí být v souladu s tím, jak byl

vytvořen podpis.

Ověřování začíná výpočtem hash hodnoty zprávy pomocí funkce Hmsg(), která

kombinuje náhodnou hodnotu z podpisu, veřejnou počáteční hodnotu, kořen klíče a původní

48 UTB ve Zlíně, Fakulta aplikované informatiky

zprávu. Výsledný hash se rozdělí na tři části – ty určují vstup do FORS, pozici v XMSS

stromě a výběr WOTS+ klíče.

Z první části digestu a podpisu se zrekonstruuje veřejný klíč FORS. Ten je dále

ověřován přes vrstvy XMSS: v každé vrstvě se pomocí WOTS+ ověří podpis a pomocí

autentizační cesty se vypočítá uzel Merkleova stromu. Tento proces pokračuje přes všechny

vrstvy až k vrcholu hyperstromu.

Na závěr se vypočtený kořen hyperstromu porovná s hodnotou PK.root z veřejného

klíče. Pokud se shodují, podpis je platný „TRUE“, jinak je neplatný „FALSE“. Ověřování

je plně deterministické a nevyžaduje uchovávání stavu.

3.3.5 Implementace a využití

Standard FIPS 205 představuje alternativu ke standardu digitálního podpisu FIPS 204,

zejména v prostředích, kde je prioritou jednodušší a robustní implementace a kde není kladen

důraz na minimalizaci velikosti podpisu.

Implementace algoritmu může být realizována v softwaru, firmwaru, hardwaru nebo

jejich kombinaci. Standard taktéž umožňuje nahradit jakýkoli výpočetní krok alternativním

matematicky ekvivalentním postupem, pokud pro všechny vstupy produkuje správný

výstup. Díky tomu mohou vývojáři optimalizovat implementace například pro rychlost,

paměť nebo energetickou náročnost. NIST plánuje zavedení validačního programu, který

bude testovat implementace digitálních podpisových algoritmů na shodu s požadavky

standardu.

Na rozdíl od předchozích FIPS publikací, standard FIPS 205 neurčuje žádnou konkrétní

výchozí variantu algoritmu. Místo toho ponechává výběr konkrétní varianty na rozhodnutí

implementátorů nebo bezpečnostních politik konkrétního systému.

Nakonec je třeba mít na paměti, že i když implementace odpovídá tomuto standardu,

negarantuje to automaticky bezpečnost celého systému. Implementátor je odpovědný za to,

že výsledný systém bude bezpečný jako celek – včetně ochrany před útoky postranními

kanály, správného generování náhodných hodnot a bezpečného mazání citlivých dat.

3.4 Alternativy ke standardům

Za alternativy ke standardizovaným postkvantovým algoritmům NIST lze považovat ty

algoritmy, které nebyly přímo vybrány k okamžité standardizaci, ale postoupily do čtvrtého

UTB ve Zlíně, Fakulta aplikované informatiky 49

kola výběru. Tyto kandidáty NIST nadále vyhodnocuje z hlediska bezpečnosti, výkonu

a implementačních vlastností, a v budoucnu mohou rozšířit portfolio schválených

postkvantových algoritmů. Výběr těchto alternativ přispívá k větší rozmanitosti a odolnosti

kryptografických standardů vůči novým typům útoků. Mezi aktuální alternativy ke

standardizovaným postkvantovým algoritmům NIST patří pouze KEM algoritmy, tedy

schémata pro výměnu klíčů a šifrování. V této fázi nejsou žádné alternativní kandidáty

v kategorii digitálních podpisů.

3.4.1 BIKE

BIKE je postkvantový algoritmus pro výměnu klíčů založený na teorii kódování. Jeho

bezpečnost stojí na obtížnosti dekódování binárních kódů, což je problém, který by měl být

bezpečný i proti kvantovým útokům. BIKE používá tzv. bit-flipping dekódování, což

znamená, že při dešifrování opakovaně upravuje jednotlivé bity, dokud nenajde správné

řešení.

Hlavní výhodou BIKE je, že je rychlý a jednoduchý na implementaci ve srovnání

s ostatními ne-mřížkovými KEM algoritmy. Díky odlišnému matematickému principu je

také vhodný jako alternativa ke stávajícím standardům a zvyšuje celkovou bezpečnostní

rozmanitost.

Nevýhodou BIKE je, že existuje nenulová pravděpodobnost selhání dešifrování,

protože bit-flipping dekódování není vždy stoprocentně spolehlivé. Zatím také není přesně

známa horní hranice této pravděpodobnosti a nebyly vyloučeny všechny možné slabé klíče.

Z těchto důvodů je BIKE stále podrobován dalšímu zkoumání v rámci NIST standardizace.

3.4.2 Classic McEliece

Classic McEliece je postkvantový algoritmus pro výměnu klíčů založený na teorii kódování.

Jeho bezpečnost je postavena na obtížnosti dekódování kódů Goppa, což je problém, který

odolává známým útokům i v případě použití kvantových počítačů. Algoritmus má za sebou

dlouhou historii výzkumu a prakticky nebyl prolomen ani klasickými, ani kvantovými

metodami.

Mezi hlavní výhody Classic McEliece patří vysoká úroveň bezpečnosti ověřená

desetiletími analýz a extrémně rychlé operace šifrování a dešifrování. Algoritmus generuje

velmi malý šifrovaný text, což je praktické při přenosu dat, a jeho bezpečnost není závislá

na mřížkových problémech, takže přináší diverzitu mezi postkvantovými algoritmy.

50 UTB ve Zlíně, Fakulta aplikované informatiky

Nevýhodou je hlavně velikost veřejného klíče, která je oproti jiným algoritmům velmi

velká a může komplikovat nasazení v prostředích s omezenou pamětí nebo šířkou pásma.

Také není vhodný pro všechny scénáře použití právě kvůli těmto rozměrům klíče

3.4.3 HQC

HQC je postkvantový KEM algoritmus, který rovněž patří do oblasti kryptografie založené

na teorii kódování. Bezpečnost HQC vychází z obtížnosti dekódování kvazicyklických kódů

s danou Hammingovou vahou, což je úloha odolná i vůči kvantovým útokům. HQC tím

rozšiřuje nabídku alternativ k mřížkovým kryptosystémům.

Mezi hlavní výhody HQC patří rovnováha mezi velikostí klíčů, rychlostí a bezpečností.

Algoritmus nabízí matematickou rozmanitost v rámci portfolia postkvantových algoritmů,

což je důležité pro zvýšení celkové odolnosti kryptografických systémů. HQC není závislý

na stejných bezpečnostních předpokladech jako například Kyber, což snižuje riziko plošného

prolomení.

Nevýhodou HQC jsou větší velikosti klíčů v porovnání s některými mřížkovými

algoritmy a potřeba dalších bezpečnostních analýz, protože dosud nebyla všechna rizika plně

prozkoumána. Zároveň není tak dlouho prověřen jako některé jiné kódové kryptosystémy.

3.4.4 SIKE

SIKE (Supersingular Isogeny Key Encapsulation) je speciální postkvantový algoritmus,

jehož bezpečnost je založena na obtížnosti nalezení isogenie mezi supersingulárními

eliptickými křivkami. Na rozdíl od předchozích algoritmů SIKE nevyužívá mříže ani

kódování, ale zcela jiný, unikátní matematický princip.

Významnou výhodou SIKE je velmi malá velikost veřejných klíčů i zašifrovaného

textu, což je praktické zejména pro použití v prostředích s omezenými zdroji, jako jsou

mobilní zařízení nebo internet věcí. SIKE přináší do postkvantové kryptografie další

diverzitu a umožňuje zkoumat nové možnosti ochrany proti kvantovým útokům.

Nevýhodou SIKE je výrazně nižší rychlost v porovnání s ostatními kandidáty, což může

být problém při nasazení v aplikacích s požadavkem na vysoký výkon. Navíc v posledních

letech prošel SIKE několika významnými kryptoanalytickými útoky, což vyvolalo otázky

ohledně jeho skutečné bezpečnosti. Z těchto důvodů zůstává SIKE nadále předmětem

dalšího výzkumu a diskusí v rámci standardizačního procesu

UTB ve Zlíně, Fakulta aplikované informatiky 51

4 PŘECHOD NA POSTKVANTOVOU KRYPTOGRAFII

S příchodem kvantových počítačů, které mohou ohrozit současné kryptografické standardy,

se stává klíčovým úkolem přechod na postkvantovou kryptografii. Tento proces zahrnuje

nejen vývoj nových algoritmů, ale také jejich implementaci do existujících systémů. Kvůli

komplexitě této transformace je důležité zajistit jednotný a koordinovaný přístup na

mezinárodní úrovni. Proto organizace, jako je NIST ve Spojených státech a Národní úřad

pro kybernetickou bezpečnost (NÚKIB) v České republice, poskytují doporučení

a standardy pro efektivní a bezpečný přechod.

4.1 Doporučení NÚKIB

V únoru roku 2025 NÚKIB aktualizoval dokument „Minimální požadavky na kryptografické

algoritmy“, kde se intenzivně zabývá přechodem na postkvantovou kryptografii a popisuje

jednotlivé přístupy k řešení kvantové hrozby.

NÚKIB doporučuje, aby v úvodní fázi přechodu na postkvantovou kryptografii byla

tato technologie nasazována pouze ve formě hybridního přístupu, tedy ve spojení s tradiční

asymetrickou kryptografií. „Na tomto přístupu stále trvá i většina evropských

bezpečnostních autorit jako například německá BSI a francouzská ANSSI.“

Hybridní přístup poskytuje vyšší míru bezpečnosti, protože algoritmy postkvantové

kryptografie jsou sice navrženy a testovány proti útokům vedeným pomocí kvantových

počítačů, ale nemusí být nutně odolné proti útokům klasických počítačů. Spojením

s klasickou kryptografií tak hybridní řešení minimalizuje rizika vyplývající z možné

existence zatím neznámých zranitelností postkvantových algoritmů.

NÚKIB udává, že existují různé úrovně kvantové zranitelnosti jednotlivých typů

kryptografických algoritmů. Zatímco asymetrické algoritmy (RSA, Digital Signature

Algorithm (DSA), Elliptic Curve Digital Signature Algorithm (ECDSA)) jsou vysoce

zranitelné vůči Shorovu algoritmu a jejich nahrazení postkvantovou kryptografií je

považováno za naléhavé, v případě symetrických algoritmů a hashovacích funkcí lze

zranitelnost výrazně omezit použitím delších klíčů nebo výstupů. U hashů je doporučená

délka zvýšena z 256 na 384 bitů, zatímco u symetrické šifry je minimální délka klíčů

256 bitů.

NÚKIB uvádí, že existují konkrétní scénáře, které si vyžadují naléhavější přechod

k používání postkvantové kryptografie. Prvním je scénář označovaný jako „Harvest now,

52 UTB ve Zlíně, Fakulta aplikované informatiky

decrypt later“, kdy útočník v současnosti zachycuje a dlouhodobě ukládá zašifrovaná data.

Útočník následně vyčkává, až bude mít k dispozici kryptoanalyticky relevantní kvantový

počítač, aby tato data zpětně prolomil. Druhým kritickým scénářem je oblast digitálních

podpisů používaných k ochraně integrity firmware nebo softwaru, kde může být integrita dat

ohrožena i mnoho let po vytvoření podpisu. V těchto případech NÚKIB doporučuje

urychlený přechod na hybridní řešení s využitím důvěryhodných postkvantových algoritmů.

Právě za důvěryhodné algoritmy udává NÚKIB standardizované algoritmy instituce

NIST, zejména ML-KEM a ML-DSA, které jsou primárními kandidáty pro nasazení díky

kombinaci jejich výkonnosti a silných bezpečnostních záruk. V rámci hybridních řešení

doporučuje NÚKIB použití bezpečnostních úrovní 3 a 5.

V souvislosti s přechodem na postkvantovou kryptografii doporučuje NÚKIB také

zavedení kryptografické agility, tedy schopnosti systémů a infrastruktur rychle přecházet

mezi různými kryptografickými algoritmy. Tato agilita zajistí, že organizace budou moci

pružně reagovat na budoucí změny ve vývoji kryptografických technologií či případně nově

objevené zranitelnosti.[15]

NÚKIB také implementoval podporu hybridního algoritmu X25519Kyber768 na svém

portálu, čímž umožnil organizacím testovat kvantově odolnou kryptografii v reálném

prostředí. Tímto krokem NÚKIB demonstroval, že hybridní přístup je nejen praktický, ale

také vhodný pro plynulý přechod na postkvantové šifrovací standardy.[25]

4.2 Doporučení ostatních organizací

Americké organizace zabývající se kybernetickou bezpečností National Security Agency

(NSA), Cybersecurity and Infrastructure Security Agency (CISA) a NIST vydaly společné

doporučení k přípravě přechodu na postkvantovou kryptografii. Organizace by měly sestavit

plán připravenosti na kvantové hrozby, provést analýzu aktuálních kryptografických

systémů, spolupracovat s dodavateli technologií a začít prioritně migrovat kritické systémy

na algoritmy, které budou odolné proti kvantovým počítačům.[26]

V roce 2024 vydala organizace NSA dokument „CNSA Suite 2.0 and Quantum

Computing FAQ”, který poskytuje podrobné informace o přechodu na PQC a algoritmech

CNSA 2.0. Tyto algoritmy, označované jako Commercial National Security Algorithms

(CNSA), jsou určeny k použití ve všech veřejných standardech. Pro symetrické blokové šifry

je definován algoritmus AES-256. Pro ustanovení klíčů je doporučen standard FIPS 203

UTB ve Zlíně, Fakulta aplikované informatiky 53

(ML-KEM-1024) a pro digitální podpisy, včetně podpisů firmwaru a softwaru, standard

FIPS 204 (ML-DSA-87).

NSA v dokumentu uvádí, že všechny systémy národní bezpečnosti (NSS) by měly být

kvantově odolné do roku 2035. Nové systémy musí být kompatibilní s CNSA 2.0 od 1. ledna

2027. Veškeré zařízení, které CNSA 2.0 nepodporuje, musí být nahrazeno do 31. prosince

2030. Od 31. prosince 2031 budou algoritmy CNSA 2.0 povinné. Přechod bude postupný,

starší algoritmy CNSA 1.0 budou dočasně fungovat souběžně s CNSA 2.0. NSA očekává,

že u některých zařízení bude nutná i výměna hardwaru.

Podle dokumentu NSA důvěřuje algoritmům CNSA 2.0 a nevyžaduje hybridní přístup,

ale uznává jeho možné řešení. Upozorňuje však na vyšší komplexitu a případné chyby při

implementaci hybridních řešeních.[27]

V rámci Evropské unie (EU) vydalo 18 partnerů společné prohlášení o přechodu na

postkvantovou kryptografii, ve kterém doporučují koordinovaný přístup v rámci Evropské

unie. Stejně jako NÚKIB, EU zastává stejný přístup a rovněž zdůrazňuje význam hybridních

řešení, která kombinují klasické a postkvantové algoritmy, a potřebu zajistit kryptografickou

agilitu pro snadné přizpůsobení budoucím algoritmům. Dokument dále upozorňuje na riziko

strategie „store now, decrypt later“ a doporučuje, aby členské státy vypracovaly plán

migrace na PQC v souladu s mezinárodními standardy. Pro zajištění kvantové odolnosti

infrastruktury EU byla na základě doporučení Evropské komise vytvořena pracovní skupina

pro přechod na PQC, kterou společně vedou Francie, Nizozemsko a Německo. Evropská

komise zároveň vyzývá všechny členské státy EU k aktivní účasti na přípravě plánu migrace

na PQC.[28]

Čína přijala aktivní přístup k postkvantové kryptografii prostřednictvím programu

Next-generation Commercial Cryptographic Algorithms (NGCC), který oznámil Institut pro

standardy komerční kryptografie (ICCS). Program zahrnuje návrhy na nové algoritmy pro

asymetrické šifrování (NGCC-PK – Public-Key Algorithms), hashování (NGCC-

CH - Cryptographic Hash Algorithms) a blokové šifrování (NGCC-BC – Block Ciphers).

Algoritmy budou hodnoceny podle bezpečnosti, výkonu a dalších kritérií, přičemž vítězné

návrhy mohou být standardizovány. Tento přístup ukazuje snahu Číny o technologickou

nezávislost a zvýšení bezpečnosti vůči kvantovým hrozbám.[29; 30]

Jižní Korea založila Výbor pro kvantovou strategii, který má koordinovat aktivity

v oblasti kvantových technologií a zvýšit konkurenceschopnost země v této oblasti. Výbor

54 UTB ve Zlíně, Fakulta aplikované informatiky

spravuje fond na podporu startupových projektů ve výši 15 milionů dolarů ročně. Plán

zahrnuje vývoj kvantových počítačů, rozšíření kvantové infrastruktury a zajištění kvantově

odolné kryptografie, která se plánuje integrovat do národních bezpečnostních systémů.

Přestože vláda oznámila nárůst rozpočtu na tyto technologie o 51,4 % na 136 milionů dolarů,

někteří odborníci se obávají, že to nebude dostatečné v konkurenci s masivními investicemi

ze strany USA a Číny.[31]

Japonsko také aktivně implementuje postkvantovou kryptografii prostřednictvím

spolupráce mezi vládními agenturami a soukromým sektorem. V lednu 2025 společnost

PQShield, specializující se na PQC, oznámila své zapojení do programu financovaného

organizací New Energy and Industrial Technology Development Organization (NEDO).

Společnost hraje klíčovou roli při návrhu nových algoritmů a protokolů. Projekt poběží od

roku 2024 do roku 2026 a má za cíl vytvořit robustní standardy PQC v souladu

s doporučeními NIST.[32]

UTB ve Zlíně, Fakulta aplikované informatiky 55

5 HYBRIDNÍ ALGORITMUS X25519MLKEM768

Hybridní algoritmus X25519MLKEM768 představuje kombinaci klasické kryptografie na

bázi eliptických křivek a postkvantové kryptografie založené na mřížkách. Algoritmus

X25519, který využívá eliptickou křivku pro efektivní výměnu klíčů, je spojen

s postkvantovým algoritmem ML-KEM768, standardizovaným NISTem jako FIPS203,

který je založen na mřížkových problémech a poskytuje odolnost vůči kvantovým útokům.

Tato kombinace vytváří robustní a vysoce bezpečné řešení pro výměnu klíčů, které je odolné

vůči útokům jak klasických, tak kvantových počítačů. Hybridní přístup je obzvláště vhodný

pro zabezpečení Hypertext Transfer Protocol Secure (HTTPS) komunikace a je doporučován

jako přechodné řešení před plným nasazením postkvantových algoritmů.[33]

5.1 X25519 – Algoritmus eliptických křivek

Algoritmus X25519 je založen na eliptických křivkách a využívá se pro bezpečnou výměnu

klíčů v rámci protokolu Elliptic Curve Diffie-Hellman (ECDH). Je založen na křivce

Curve25519, kterou navrhl Daniel J. Bernstein pro dosažení vysoké úrovně bezpečnosti

a zároveň efektivity při šifrování.

Každý uživatel má 32 bajtový privátní a 32 bajtový veřejný klíč. Při navazování spojení

si dvě strany vymění své veřejné klíče. Pomocí svého privátního klíče a veřejného klíče

druhé strany pak spočítají sdílené tajemství pomocí funkce Curve25519(). Výsledný klíč

se použije pro šifrování komunikace.

Algoritmus nabízí 128bitovou bezpečnost, je odolný vůči útokům postranními kanály

a poskytuje ochranu i proti útokům na úrovni mezipaměti. Mezi hlavní výhody patří vysoká

rychlost, krátké klíče (32 bajtů) s vysokou úrovní bezpečnosti a snadná implementace

v různých kryptografických knihovnách (OpenSSL, BoringSSL, LibreSSL). Algoritmus je

široce využíván v protokolech jako TLS, Secure Shell (SSH) a Internet Protocol Security

(IPsec), kde zajišťuje bezpečnou komunikaci [34]

5.2 Princip fungování

Algoritmus je navržen pro zabezpečení v rámci protokolu TLS 1.3 a funguje následovně.

Začíná se s generováním klíčových párů na klientově straně. Klient vygeneruje veřejný

a privátní klíč pro ML-KEM a taktéž klíčový pár pro X25519. Klient také vygeneruje

samostatný pár X25519 veřejného a privátního klíče jako záložní možnost pro případ, že

56 UTB ve Zlíně, Fakulta aplikované informatiky

server nepodporuje X25519MLKEM 768. Pokud server tento protokol podporuje, záložní

klíč se vůbec nepoužije.

Klient poté zahájí standardní TLS 1.3 handshake zprávou ClientHello, která obsahuje

skupiny “X25519MLKEM768 ” a také “X25519” v sekci Supported Groups. V sekci

KeyShare klient odešle dva klíče: hybridní klíč, vytvořený zřetězením veřejného KEM klíče

s veřejným X25519 klíčem, a samostatný veřejný klíč X25519.

Server následně extrahuje veřejné klíče X25519 a KEM z kombinovaného klíče. Poté

server vygeneruje vlastní pár veřejného a soukromého klíče pro X25519. Pomocí svého

soukromého klíče a veřejného klíče od klienta spočítá sdílené tajemství pomocí algoritmu

X25519.

Server dále použije funkci zapouzdření KEM s veřejným KEM klíčem klienta

k výpočtu druhé části sdíleného tajemství a šifrovaného textu KEM. Obě sdílená tajemství

jsou následně zřetězena do finálního sdíleného tajemství, které je použito pro výpočet klíčů

v rámci TLS 1.3. Nakonec server zřetězí svůj veřejný X25519 klíč se šifrovaným textem

KEM a odešle výsledný klíč zpět klientovi v rámci zprávy ServerHello.

Klient poté obdrží veřejný X25519 klíč od serveru a zkombinuje jej se svým

soukromým klíčem X25519 k výpočtu sdíleného tajemství. Následně použije šifrovaný text

KEM spolu se svým privátním KEM klíčem k výpočtu druhé části sdíleného tajemství

pomocí funkce Decaps(). Stejně jako na straně serveru, obě tajemství zřetězí do finálního

sdíleného tajemství, které použije jako vstup do funkce HKDF-Extract v rámci protokolu

HKDF (HMAC-based Key Derivation Function), který slouží k bezpečné derivaci

šifrovacích klíčů v protokolu TLS 1.3 (Transport Layer Security). Komunikace poté

pokračuje podle standardního průběhu TLS 1.3.[35]

UTB ve Zlíně, Fakulta aplikované informatiky 57

Obrázek 8 Zjednodušený princip fungování hybridního algoritmu X25519MLKEM768

(zdroj: [35])

5.3 Reálné využití

Tento hybridní algoritmus, jak už bylo napsáno, byl navržen primárně pro zajištění odolnosti

při navazování šifrované komunikace pomocí TLS 1.3. Nyní je X25519MLKEM768 po

standardizaci organizací NIST experimentálně využíván v prohlížečích Google Chrome

a Mozilla Firefox, přičemž u obou je nutné aktivovat hybridní algoritmus v nastavení.

Cloudové služby jako Cloudflare a Amazon Web Services (AWS) také testují nasazení

algoritmu pro šifrování komunikace mezi servery a klientem. Cloudflare již používá

X25519MLKEM768 pro přenos dat mezi svými servery, a to již ve 33 % případech. Zatím

však není jasné, zda je tato funkce dostupná pouze pro bezplatné účty nebo i pro všechny

firemní zákazníky, a zda je šifrování použito pro úplné end-to-end spojení mezi klientem

a serverem.

Společnost Meta přidala v květnu 2024 podporu pro X25519MLKEM768 a vlastní

variantu X25519MLKEM512_FB do své knihovny Fizz. Zatím však není jasné, zda tuto

podporu využívají na veřejně dostupných službách.[36]

58 UTB ve Zlíně, Fakulta aplikované informatiky

Jak už bylo uvedeno dříve, web NÚKIB také nově podporuje hybridní algoritmus

X25519Kyber768. Tato implementace umožňuje organizacím testovat kvantově odolnou

kryptografii v reálném prostředí, čímž se potvrzuje, že hybridní přístup je vhodný pro

přechod na postkvantové šifrovací standardy.[25]

5.4 Alternativní hybridní algoritmy

V této podkapitole jsou představeny alternativní hybridní algoritmy, které slouží jako možné

náhrady za X25519MLKEM768 na odpovídající bezpečnostní úrovni (Level 3). Tyto

algoritmy kombinují osvědčené klasické kryptografické metody s postkvantovými KEM

algoritmy, které představují buď schválené standardy NIST, nebo jejich alternativy. Jejich

zařazení přispívá ke zvýšení rozmanitosti a robustnosti kryptografických systémů při

přechodu na postkvantové zabezpečení.

5.4.1 P-384MLKEM768

Hybridní algoritmus P-384MLKEM768 kombinuje klasickou eliptickou křivku P-384

a postkvantový algoritmus ML-KEM-768.

Výkon: P-384MLKEM768 nabízí velmi dobrý výkon, a to jak z hlediska rychlosti

navazování spojení, tak efektivního využití paměti. Podle studie má pouze mírně vyšší režii

oproti čistě klasickým řešením. Ve srovnání s X25519MLKEM768 jsou rozdíly v rychlosti

handshake a velikosti klíčů minimální.

Kompatibilita: P-384 je standardizovaná eliptická křivka široce podporovaná v mnoha

systémech. Kombinace s ML-KEM-768 je proto vhodná pro prostředí, kde je kladen důraz

na standardizované algoritmy a snadnou integraci do existující infrastruktury.

P-384MLKEM768 je vhodný pro aplikace vyžadující vysokou úroveň bezpečnosti,

dobrý výkon a kompatibilitu s běžně používanými kryptografickými knihovnami.[37]

5.4.2 RSA3072-MLKEM768

Hybridní algoritmus RSA3072-MLKEM768 kombinuje klasický algoritmus RSA s délkou

klíče 3072 bitů a postkvantový algoritmus ML-KEM-768.

Výkon: X25519MLKEM768 má obecně nižší výpočetní nároky a menší velikost klíčů

ve srovnání s RSA3072-MLKEM768. To může vést k rychlejšímu zpracování a menší zátěži

na síťové přenosy.

UTB ve Zlíně, Fakulta aplikované informatiky 59

Kompatibilita: RSA je široce podporován v existující infrastruktuře, což může usnadnit

integraci RSA3072-MLKEM768 do stávajících systémů. Na druhou stranu X25519 je

modernější algoritmus, který nabízí lepší výkon, ale nemusí být všude podporován.

Volba mezi RSA3072-MLKEM768 a X25519MLKEM768 závisí na konkrétních

požadavcích a omezeních daného prostředí. Pokud je prioritou kompatibilita se stávající

infrastrukturou, může být vhodnější RSA3072-MLKEM768[38]

5.4.3 P-384BIKEL3

Hybridní algoritmus P-384BIKEL3 kombinuje eliptickou křivku P-384 a postkvantový

algoritmus BIKE na bezpečnostní úrovni L3.

Výkon: P-384BIKEL3 má vyšší latenci při navazování spojení a větší nároky na paměť

ve srovnání s P-384MLKEM768 i X25519MLKEM768. Podle výsledků může být

navazování spojení znatelně pomalejší.

Kompatibilita: P-384 zajišťuje kompatibilitu s běžnými kryptografickými systémy,

avšak algoritmus BIKE není zatím tak rozšířený ani standardizovaný jako ML-KEM.

Výhodou však je, že BIKE nabízí odlišný matematický základ, což zvyšuje diverzitu

systému.

P-384BIKEL3 je vhodný tam, kde je preferována rozmanitost kryptografických

schémat a diverzita bezpečnostních předpokladů před absolutním výkonem.[37]

5.4.4 P-384HQC192

Hybridní algoritmus P-384HQC192 kombinuje eliptickou křivku P-384 a postkvantový

algoritmus HQC-192.

Výkon: P-384HQC192 má ve srovnání s P-384MLKEM768 i X25519MLKEM768

vyšší latenci a větší nároky na paměť. Rychlost navazování spojení je pomalejší, což může

být nevýhodou v prostředích s vysokými nároky na rychlost.

Kompatibilita: P-384 je běžně podporován, ale algoritmus HQC není zatím

standardizován ani natolik rozšířený jako ML-KEM. Výhodou však je matematická

odlišnost, která přispívá k odolnosti systému.

P-384HQC192 lze využít v případech, kdy je upřednostňována rozmanitost

postkvantových algoritmů a zvýšená odolnost systému vůči novým typům útoků.[37]

60 UTB ve Zlíně, Fakulta aplikované informatiky

 PRAKTICKÁ ČÁST

UTB ve Zlíně, Fakulta aplikované informatiky 61

6 IMPLEMENTACE X25519MLKEM768

V této kapitole je představena praktická implementace hybridního kryptografického

algoritmu X25519MLKEM768. Pro demonstraci reálného případu užití byl zvolen kontext

zabezpečené komunikace na internetu – konkrétně šifrovací handshake v rámci protokolu

TLS, který tvoří základ důvěryhodného přenosu dat v protokolu HTTPS. Vzhledem k tomu,

že právě v tomto prostředí se hybridní algoritmy navrhují a testují jako náhrada stávajících

mechanismů ohrožených kvantovým výpočetním výkonem, představuje tento scénář ideální

příklad pro demonstraci.

V rámci této kapitoly je popsán návrh zjednodušeného TLS-like handshaku

využívajícího algoritmus X25519MLKEM768, jeho implementace a testování, a to bez

nutnosti nasazení na reálný server. Simulace probíhá v lokálním prostředí, což umožňuje

detailní sledování a pochopení jednotlivých kroků výměny klíčů a generování společného

tajemství.

Celá implementace je realizována v programovacím jazyce Python, a to s důrazem na

srozumitelnost, přehlednost a snadnou testovatelnost jednotlivých komponent hybridního

šifrovacího mechanismu.

6.1 Implementace klasické výměny klíčů – X22519

Při implementaci algoritmu X25519, který v rámci protokolu slouží pro klasickou výměnu

klíčů, bylo vycházeno z výukového dokumentu Implementing Curve25519/X25519:

A Tutorial on Elliptic Curve Cryptography od Martina Kleppmanna. V uvedeném materiálu

je podrobně popsán matematický základ a konstrukce algoritmu pomocí Montgomery

ladder, včetně bezpečnostních aspektů, jako je výpočet v konstantním čase funkce – cswap()

a úprava skaláru, funkce clamping().[39]

Implementace algoritmu X25519, jež se nachází v souboru x25519.py, byla rozdělena

do několika samostatných funkcí, které odpovídají jednotlivým matematickým operacím

potřebným pro výpočet skalárního násobení na křivce Curve25519.

62 UTB ve Zlíně, Fakulta aplikované informatiky

6.1.1 Aritmetické operace

V této podkapitole jsou popsány základní matematické operace, které jsou využívány při

výpočtech na eliptické křivce Curve25519. Veškeré operace probíhají v konečném tělese Fp,

kde p je prvočíslo definující velikost pole.

𝑝 = 2255 − 19

Zvolené prvočíslo umožňuje efektivní výpočty na 64bitových procesorech, jelikož

hodnoty menší než 2255 se vejdou do čtyř registrů. Jeho tvar 2n – c zároveň zjednodušuje

redukci modulo p, což zvyšuje rychlost výpočtů. Pole Fp zároveň poskytuje bezpečnost

odpovídající přibližně 128 bitům.

Pro práci v tomto tělese byly implementovány základní aritmetické operace: sčítání,

odčítání, násobení a výpočet inverzního prvku. Tyto funkce tvoří nezbytný základ pro

následné výpočty v hlavní funkci x25519(), kde jsou využívány v každém kroku algoritmu

Montgomery ladder.

6.1.2 Pomocné bezpečnostní funkce

Kromě základních aritmetických operací obsahuje implementace také dvě klíčové pomocné

funkce, které zajišťují bezpečnost algoritmu X25519 vůči specifickým třídám útoků.

Konkrétně se jedná o funkce clamp_scalar() a cswap().

Funkce clamp_scalar() upravuje vstupní privátní klíč – skalár do bezpečné podoby, jak

je předepsáno ve specifikaci RFC 7748. Nejprve je vstup převeden z neměnitelného typu

bytes na typ bytearray, který umožňuje manipulaci s jednotlivými bajty. Poté dochází

k nastavení konkrétních bitů na požadované hodnoty: dolní tři bity jsou vynulovány, nejvyšší

bit je vynulován a druhý nejvyšší bit je nastaven na 1. Tím se zaručí, že výsledný skalar je

násobkem osmi, není příliš malý ani příliš blízko horní hranici tělesa, což zajišťuje bezpečné

vlastnosti výsledného klíče.

Funkce cswap() provádí podmíněné prohození dvou hodnot bez použití větvení, čímž

zajišťuje konstantní čas výpočtu. To zabraňuje útokům založeným na časování. Místo

podmínky if používá bitové operace XOR a AND, které zaručují stejný průběh výpočtu pro

všechny vstupy. Tato funkce je klíčová při práci s Montgomery ladder, kde se pravidelně

rozhoduje, zda body mezi sebou prohodit.

UTB ve Zlíně, Fakulta aplikované informatiky 63

6.1.3 Hlavní X25519 funkce

Funkce x25519() představuje hlavní výpočetní část algoritmu a slouží k provedení

skalárního násobení na eliptické křivce Curve25519. Vstupem je privátní klíč ve formátu 32

bajtů a u-souřadnice vstupního bodu (standardně hodnota 9). Výstupem je u-souřadnice

výsledného bodu, která slouží jako veřejný klíč nebo sdílené tajemství.

Výpočet probíhá pomocí algoritmu Montgomery ladder, který umožňuje efektivní

a bezpečné násobení bodu skalárem bez použití souřadnice y. Funkce využívá pomocné

operace jako add(), subtract(), multiply(), inverse(), cswap() a clamp_scalar() a provádí

celkem 255 iterací odpovídajících jednotlivým bitům vstupního skalaru. Iterace probíhá od

nejvyššího bitu směrem k nejnižšímu, což odpovídá způsobu zpracování skalárního součinu

ve specifikaci RFC 7748.

Funkce x25519() tak představuje jádro celé implementace. Využívá optimalizovaný

výpočet pomocí Montgomery ladder. Díky použití pouze x-souřadnic a konstantního

časování operací je zajištěna vysoká výpočetní efektivita i odolnost proti běžným typům

postranních útoků. Výstupem této funkce je buď veřejný klíč, nebo sdílené tajemství mezi

dvěma stranami komunikace.

6.1.4 Generování klíčového páru

Funkce generate_keypair() slouží k vygenerování dvojice klíčů potřebných pro výměnu

klíčů pomocí algoritmu X25519. Konkrétně se jedná o privátní klíč (skalár) a odpovídající

veřejný klíč, který je získán jeho skalárním násobením se standardním výchozím bodem

křivky (u = 9).

Nejprve je náhodně vygenerováno 32 bajtů pomocí funkce os.urandom(), která

poskytuje kryptograficky bezpečné náhodné hodnoty. Tento vstup je následně v rámci

funkce x25519() upraven pomocí tzv. clamping operace, čímž vznikne skutečný privátní

klíč. Následně je tímto klíčem provedeno skalární násobení se základním bodem křivky za

účelem výpočtu veřejného klíče. Výsledný veřejný klíč je nakonec převeden do pole bajtů

ve formátu little-endian, jak vyžaduje specifikace algoritmu X25519.

6.1.5 Výpočet sdíleného tajemství

Funkce compute_shared_secret() slouží k výpočtu sdíleného tajemství mezi dvěma stranami

na základě jejich klíčových párů. Tento krok odpovídá závěrečné fázi výměny klíčů dle

principu Diffie-Hellmanova protokolu – každá strana využívá svůj privátní klíč a veřejný

64 UTB ve Zlíně, Fakulta aplikované informatiky

klíč protistrany k výpočtu stejného tajného klíče, aniž by došlo k jeho přímému přenosu.

Funkce jako vstup očekává vlastní privátní klíč ve formátu 32 bajtů a veřejný klíč

protistrany, rovněž ve formátu 32 bajtů v little-endian reprezentaci.

Veřejný klíč je převeden na celé číslo a použit jako vstupní bod u pro funkci x25519(),

kde se provede skalární násobení s vlastním privátním klíčem. Výsledkem je sdílené

tajemství, které je opět převedeno do formátu 32 bajtů v little-endian reprezentaci. Toto

sdílené tajemství je identické pro obě komunikující strany, pokud použijí odpovídající klíče.

6.2 Implementace postkvantové výměny klíčů – MLKEM768

V rámci implementace kvantově odolného algoritmu bude realizována jeho nejaktuálnější

standardizovaná verze ML-KEM-768. Předloha implementace vychází přímo z oficiálního

dokumentu vydaného organizací NIST, ve kterém jsou detailně popsány všechny potřebné

parametry a funkce algoritmu.

6.2.1 Kryptografické primitiva

Kryptografická primitiva definovaná ve FIPS 203 v sekci 4.1 jsou v této práci

implementována v souboru crypto_primitives.py a staví na standardních funkcích SHA-3

a SHAKE, které využívají modul hashlib jazyka Python.

Funkce PRF() je pseudonáhodná funkce založená na SHAKE256. Generuje

deterministicky pseudonáhodná data pevně dané délky ze vstupní počáteční hodnoty

s a čítače b. V ML-KEM slouží zejména k deterministickému odvození šumových vektorů.

Funkce H() představuje standardní hashovací funkci SHA3-256 vracející 32bajtový

hash vstupu s. Používá se například pro hashování veřejného (zapouzdřujícího) klíče, jehož

hash je součástí soukromého (odpouzdřujícího) klíče.

Funkce J() poskytuje 32bajtový hash pomocí SHAKE256. Využívá se při implicitním

odmítnutí v procesu odpouzdření k výpočtu alternativního sdíleného klíče.

Funkce G() získává dva nezávislé 32bajtové výstupy rozdělením 64bajtového hashe

SHA3-512 vstupu c. Slouží jako funkce pro odvození klíče například pro derivaci interních

počátečních hodnot ρ a σ nebo sdíleného klíče K a náhodnosti r.

UTB ve Zlíně, Fakulta aplikované informatiky 65

6.2.2 Implementace pomocných algoritmů

V sekci 4.2 standardu je definována sada obecných pomocných obecných algoritmů, které

slouží jako základní stavební bloky pro hlavní funkce ML-KEM. Tyto algoritmy,

implementované v souboru utils.py, zajišťují konverze datových typů, kompresi dat

a pseudonáhodné vzorkování. Jejich korektní implementace, popsaná níže, je klíčová pro

správnou funkci a bezpečnost celého mechanismu.

Pro převod mezi bajtovými řetězci a poli bitů byly implementovány funkce

BytesToBits() a BitsToBytes(). Dle specifikace FIPS 203 je použita konvence little-endian,

kdy nejméně významný bit bajtu odpovídá bitu na nejnižším indexu.

Pro ztrátovou kompresi koeficientů polynomů slouží funkce Compress()

a Decompress(). Funkce Compress() převede celé číslo x na přibližnou hodnotu s menším

počtem bitů d. Funkce Decompress() provádí přibližnou rekonstrukci původní hodnoty

z d-bitového komprimovaného čísla y. Obě funkce využívají definovaný způsob

zaokrouhlování implementovaný pomocí celočíselné aritmetiky. Jejich účelem je snížit

velikost přenášených dat v šifrovaném textu.

Funkce ByteEncode() a ByteDecode() zajišťují převod mezi polem N=256 d-bitových

celých čísel, která reprezentují koeficienty, a odpovídajícím bajtovým řetězcem. Funkce

ByteEncode() prochází vstupní pole koeficientů a pro každý z nich postupně extrahuje jeho

d bitů, počínaje nejméně významným. Všechny získané bity z celého pole jsou poté spojeny

a převedeny na výsledný bajtový řetězec. Funkce ByteDecode() provádí inverzní

operaci: nejprve převede vstupní bajtový řetězec na sekvenci bitů a následně pro každou

skupinu d bitů zrekonstruuje odpovídající celé číslo.

Funkce SampleNTT(), implementována v souboru sampling.py, generuje

pseudonáhodné koeficienty polynomu přímo v NTT doméně. Na základě vstupního

32bajtové vstupní hodnoty ρ a dvou indexů i, j využívá SHAKE-128 k produkci proudu

kandidátních hodnot pro koeficienty. Tyto hodnoty jsou akceptovány pouze pokud jsou

menší než modul Q. Tento proces odmítacího vzorkování se opakuje, dokud není získáno

všech N koeficientů, které se typicky používají pro deterministické generování matice A.

Funkce SamplePolyCBD(), rovněž umístěná v souboru sampling.py, vytváří speciální

šumové polynomy. Tyto polynomy se skládají z čísel, která jsou záměrně malá. Funkce

k tomu používá vstupní data B a parametr η. Tento parametr η určuje, jak malá výsledná

66 UTB ve Zlíně, Fakulta aplikované informatiky

čísla v polynomu mají být. Výsledkem je tedy seznam čísel, který se v algoritmu ML-KEM

používá jako tajný nebo šumový prvek.

6.2.3 Implementace NTT a polynomiálního násobení

Klíčovou součástí algoritmu ML-KEM pro dosažení potřebné efektivity je využití NTT, jak

je definováno ve standardu v sekci 4.3 a implementováno v souboru ntt.py. Přímé násobení

polynomů by bylo výpočetně náročné proto NTT umožňuje převést polynomy do NTT

domény, kde lze jejich součin spočítat výrazně rychleji pomocí násobení po jednotlivých

složkách, s využitím specializovaných operací.

Funkce NTT() a InvNTT() realizují Číselně Teoretickou Transformaci a její inverzi

standardu FIPS 203. Tyto transformace jsou výpočetně efektivní variantou Diskrétní

Fourierovy Transformace přizpůsobenou pro operace v konečném tělese – modulo Q a tvoří

základ pro rychlé násobení polynomů. Pro dosažení efektivity využívají Cooley-Tukey

algoritmus, jehož klíčovou součástí jsou předpočítané faktory, jejichž hodnoty jsou uvedeny

v dodatku A standardu a v této implementaci uloženy v konstantě ZETAS_BITREV, které se

přímo používají v motýlkových operacích obou algoritmů. Funkce NTT() transformuje

polynom ze standardní koeficientové reprezentace do NTT domény s bitově převráceným

uspořádáním koeficientů. Funkce InvNTT() provádí inverzní proces a zahrnuje finální

škálování předpočítaným faktorem.

Funkce MultiplyNTTs() slouží k násobení dvou polynomů, které jsou již v NTT

doméně. V NTT doméně se násobení provádí efektivně po jednotlivých složkách. Tato

funkce tedy prochází všech 128 komponent a pro každou komponentu volá funkci

BaseCaseMultiply(), která provede samotné násobení pro danou komponentu. Výsledkem

je nové pole 256 koeficientů, které představuje součin obou vstupních polynomů v NTT

doméně.

Funkce BaseCaseMultiply() je podprogramem pro MultiplyNTTs() a provádí základní

násobení pro jednu komponentu. Na vstupu dostává koeficienty dvou prvků a konstantu

gama specifickou pro danou komponentu. Konstanta γ je jednou z hodnot předpočítaných

podle Dodatku A standardu a je již uložena v konstantách implementace. Funkce pak podle

definovaných algebraických pravidel vypočítá dva koeficienty výsledného součinu, přičemž

všechny operace probíhají modulo Q.

UTB ve Zlíně, Fakulta aplikované informatiky 67

6.2.4 Implementace schématu K-PKE

Tato kapitola popisuje implementaci schématu K-PKE, které tvoří základní komponentu pro

mechanismus zapouzdření klíče ML-KEM, jak je definováno ve standardu FIPS 203,

konkrétně v sekci 5. Implementace algoritmů K-PKE je realizována v souboru pke.py,

přičemž všechny specifické parametry pro danou bezpečnostní úroveň jsou pro přehlednost

definovány v souboru constants.py. Je důležité zdůraznit, že K-PKE není navrženo pro

samostatné nasazení jako šifrovací schéma, ale slouží výhradně jako sada podprogramů,

které využívají hlavní algoritmy ML-KEM. Tyto algoritmy K-PKE pracují s parametry,

které jsou dány zvolenou bezpečnostní úrovní ML-KEM – v případě této implementace se

jedná o bezpečnostní úroveň 3.

Prvním algoritmem schématu K-PKE je generování klíčů, implementované funkcí

K_PKE_KeyGen(). Tato funkce má za úkol vygenerovat na základě vstupní 32bajtové

náhodnosti d dvojici klíčů: veřejný šifrovací klíč ekPKE a soukromý dešifrovací klíč dkPKE.

Veřejný klíč ekPKE bude později použit jako zapouzdřovací klíč v ML-KEM, zatímco

dkPKE zůstává soukromý a slouží odpouzdření.

Funkce K_PKE_KeyGen() nejprve ze vstupní náhodnosti d odvodí pomocí G vstupní

hodnoty ρ a σ. Počáteční hodnota ρ slouží k vygenerování matice A v NTT doméně, kde je

využita pomocná funkce generate_matrix(). Z počáteční hodnoty σ se pak pomocí PRF

a SamplePolyCBD() vygenerují tajný vektor s a šumový vektor e, které jsou obratem

převedeny funkcí NTT() do NTT reprezentace. Následně se vypočítá vektor t̂ pomocí

rovnice

𝑡̂ = 𝐴̂𝑠̂ + 𝑒̂

Kde násobení a sčítání probíhá efektivně v NTT doméně. Nakonec se pomocí funkce

ByteEncode() zakóduje t̂ a připojí ρ pro vytvoření veřejného klíče ekPKE, a zakóduje s pro

vytvoření soukromého klíče dkPKE.

Funkce K_PKE_Encrypt() implementuje K-PKE šifrování. Přijme veřejný klíč ekPKE,

zprávu m a náhodnost r a vytvoří zašifrovaný text c. Nejprve z klíče ekPKE získá potřebný

vektor t̂ a počáteční hodnot ρ. Hodnotu ρ použije pomocná funkce generate_matrix()

k regeneraci matic A v NTT doméně. Z náhodnosti r se pak pomocí PRF()

a SamplePolyCBD() odvodí vektory y, e1 a polynom e2. Vektor y je převeden do NTT

domény. Poté se pomocí y, matice A, vektoru t̂ a šumových složek e1, e2 vypočítají vektory

u a v. Do výpočtu v je také zakomponována zpráva m. Tyto výpočty zahrnují operace v NTT

68 UTB ve Zlíně, Fakulta aplikované informatiky

doméně a zpětnou transformaci InvNTT. Výsledné vektory u a v jsou pak komprimovány

pomoci funkce Compress() a spojeny do zašifrovaného textu c.

Funkce K_PKE_Decrypt() implementuje K-PKE dešifrování. Přijme soukromý klíč

dkPKE a šifrovaný text c a vrátí původní zprávu m. Nejprve z šifrovaného textu c extrahuje

a dekomprimuje pomocí funkcí ByteDecode() a Decompress() vektory u' a v'. Z klíče dkPKE

dekóduje tajný klíč s. Následně vypočítá rozdílový polynom w: zkombinuje tajný klíč

s s vektorem u' a výsledek odečte od v'. Tento výpočet využívá operace v NTT doméně

a odečtení díky pomocné funkci _poly_sub(). Z výsledného polynomu w je nakonec pomocí

Compress() a ByteEncode() získána původní zpráva m.

6.2.5 Implementace interních algoritmů

Tato kapitola se zaměřuje na implementaci interních algoritmů ML-KEM, specifikovaných

v sekci 6 standardu FIPS 203 které jsou v této práci realizovány v souboru kem_internal.py.

Tyto funkce představují základní stavební bloky hlavních ML-KEM operací a jejich

klíčovou charakteristikou je deterministická povaha: negenerují žádnou vlastní náhodnost

a jejich výstup je plně určen vstupy. Popisovaná implementace těchto algoritmů staví na

dříve definovaných kryptografických primitivech, pomocných funkcích a schématu K-PKE

a její korektnost je zásadní pro správnou funkci celého ML-KEM.

Funkce MLKEM768_KeyGen_internal() implementuje deterministické jádro

generování klíčů pro ML-KEM. Na vstupu přijímá dvě 32bajtové náhodnosti, označované

jako d a z, a vrací výsledný pár klíčů: zapouzdřující klíč ek a odpouzdřující klíč dk. Hlavním

krokem funkce je zavolání již popsané funkce K_PKE_KeyGen s náhodností d, čímž se

získá základní dvojice veřejného ekPKE a soukromého dkPKE klíče pro schéma K-PKE.

Finální zapouzdřující klíč ML-KEM – ek je pak přímo roven veřejnému klíči K-PKE.

Odpouzdřující klíč ML-KEM – dk je následně sestaven zřetězením čtyř částí: soukromého

klíče K-PKE, veřejného klíče K-PKE, hashe veřejného klíče a druhé vstupní náhodnosti z.

Funkce také obsahuje kontroly správné délky vstupních počáteční hodnoty d a z.

Funkce MLKEM768_Encaps_internal() implementuje deterministické jádro

zapouzdření klíče pro ML-KEM. Na vstupu přijímá zapouzdřující klíč ek a 32bajtovou

náhodnost m a vrací výsledný pár: 32bajtový sdílený tajný klíč K šifrovaný text c. Nejprve

pomocí kryptografické funkce G() odvodí jak výsledný sdílený klíč K, tak interní 32bajtovou

náhodnost r, která bude použita pro K-PKE šifrování. Vstupem pro funkci G() je přitom

zřetězení vstupní náhodnosti m a hashe zapouzdřujícího klíče ek, který je vypočítán pomocí

UTB ve Zlíně, Fakulta aplikované informatiky 69

funkce H(). Následně funkce zavolá již popsanou funkci K_PKE_Encrypt() se

zapouzdřujícím klíčem ek, zprávou m a odvozenou náhodností r, čímž získá šifrovaný text

c. Nakonec vrátí dvojici K a c. Implementace obsahuje také kontrolu správné délky vstupní

náhodnosti m.

Funkce MLKEM768_Decaps_internal() implementuje deterministické jádro

odpouzdření klíče. Na vstupu přijímá odpouzdřující klíč dk a šifrovaný text c a vrací

výsledný 32bajtový sdílený klíč K. Funkce nejprve rozparsuje odpouzdřující klíč dk na jeho

jednotlivé součásti: soukromý klíč dkPKE, veřejný klíč ekPKE, hash veřejného klíče

h a hodnotu z pro implicitní zamítnutí. Poté pomocí K_PKE_Decrypt() dešifruje šifrovaný

text c, čímž získá kandidáta na původní zprávu m'. Následně z m' a hashe h odvodí pomocí

funkce G() kandidáta na sdílený klíč K' a náhodnost r' pro opětovné zapouzdření. Také

vypočítá alternativní klíč K̄ pro případ implicitního zamítnutí pomocí funkce J(). Poté

provede kontrolní opětovné zapouzdření zprávy m' pomocí K_PKE_Encrypt() a získá

rekonstruovaný šifrovaný text c'. Nakonec porovná pomocí pomocné funkce

constant_time_compare() v konstantním čase původní šifrovaný text c s rekonstruovaným

c'. Pokud se neshodují, nahradí kandidátní klíč K' alternativním klíčem K̄. Vrácenou

hodnotou je finální sdílený klíč K'.

6.2.6 Hlavní algoritmy ML-KEM

Tato podkapitola popisuje tři hlavní algoritmy mechanismu ML-KEM, jejichž implementace

je realizována v souboru mlkem768.py. Tyto funkce představují finální vnější rozhraní

celého schématu, které je určeno pro koncové použití. Jak bylo naznačeno dříve, tyto hlavní

algoritmy volají příslušné interní funkce pro provedení samotných kryptografických operací.

Navíc oproti interním funkcím zajišťují generování potřebné náhodnosti a provádějí

nezbytné kontroly vstupních parametrů, jak vyžaduje standard FIPS 203. Protože jádro

výpočtů již bylo rozebráno v předchozích částech, následující popisy se zaměří především

na tyto dodatečné kroky a celkové propojení.

Funkce MLKEM768_KeyGen() představuje hlavní rozhraní pro generování klíčů. Tato

funkce nepřijímá žádné vstupní argumenty, ale sama interně generuje potřebnou náhodnost

pomocí kryptograficky bezpečného generátoru náhodných čísel. Konkrétně vygeneruje dvě

32bajtové náhodné hodnoty d a z. Tyto hodnoty poté předá jako vstup interní funkci

MLKEM768_KeyGen_internal(), která provede veškeré kryptografické výpočty a vrátí

dvojici klíčů. Funkce MLKEM768_KeyGen() pak tuto dvojici klíčů ek a dk pouze vrátí jako

70 UTB ve Zlíně, Fakulta aplikované informatiky

svůj výsledek. Implementace zahrnuje také základní ošetření případných chyb při

generování náhodnosti.

Funkce MLKEM768_Encaps() představuje hlavní rozhraní pro zapouzdření klíče

ML-KEM. Na vstupu přijímá pouze veřejný zapouzdřující klíč ek a jejím výstupem je

dvojice: 32bajtový sdílený tajný klíč K a šifrovaný text c. Než dojde k samotnému

zapouzdření, funkce nejprve provede validaci vstupního klíče ek pomocí pomocné funkce

_validate_encapsulation_key(). Tato validace ověřuje správnou délku klíče a také

kontroluje, zda je klíč správně zakódován podle pravidel standardu. Pokud klíč validací

neprojde, funkce selže. V opačném případě interně vygeneruje 32bajtovou kryptograficky

bezpečnou náhodnost m. Tuto náhodnost m spolu s validovaným klíčem ek následně předá

interní funkci MLKEM768_Encaps_internal(), která provede jádro kryptografických

výpočtů. Funkce MLKEM768_Encaps pak pouze vrátí výsledný pár K – sdílené tajemství,

c – zašifrovaný text.

Funkce MLKEM768_Decaps() představuje hlavní rozhraní pro odpouzdření klíče. Na

vstupu přijímá soukromý odpouzdřující klíč dk a šifrovaný text c a jejím výstupem je

výsledný 32bajtový sdílený tajný klíč K. Než dojde k samotnému odpouzdření, funkce

nejprve provede validaci vstupů dk a c pomocí pomocné funkce _validate_decaps_inputs().

Tato validace ověřuje, zda mají dk a c správné očekávané délky pro danou bezpečnostní

úroveň a také kontroluje vnitřní konzistenci klíče dk pomocí uloženého hashe. Pokud vstupy

validací neprojdou, funkce selže. V opačném případě předá validované vstupy dk a c interní

funkci MLKEM768_Decaps_internal(), která provede jádro opouzdřujícího výpočtu včetně

mechanismu implicitního zamítnutí. Funkce MLKEM768_Decaps() pak pouze vrátí

výsledný sdílené tajemství K získaný z interní funkce.

6.3 Návrh TLS-like protokolu

Pro ukázku reálné implementace vlastní verze hybridního algoritmu X25519MLKEM768

byl navržen a realizován protokol inspirovaný standardem TLS, který se běžně používá pro

zabezpečenou komunikaci na internetu, například v rámci protokolu HTTPS. V souboru

tls_core.py je kombinován klasický přístup založený na eliptických křivkách X25519

s postkvantovým algoritmem ML-KEM768, a to za účelem výpočtu sdíleného tajemství

mezi klientem a serverem. Princip fungování této výměny odpovídá popisu uvedenému

v kapitole 5.2.

UTB ve Zlíně, Fakulta aplikované informatiky 71

Pomocí funkce client_create_hello() klient inicializuje navázání spojení se serverem.

Během této operace jsou vytvořeny tři páry klíčů – dvojice pro hybridní výměnu a jeden

záložní pár pro klasickou výměnu pomocí X25519. Výsledná zpráva ClientHello obsahuje

náhodně generované ID relace, seznam podporovaných skupin pro výměnu klíčů – klasický

nebo hybridní přístup a dvojici sdílených klíčových hodnot. Prvním z nich je zřetězený

veřejný klíč X25519 a ML-KEM768 určený pro hybridní výměnu, druhým samostatný

veřejný klíč X25519 pro případ, že server hybridní režim nepodporuje.

Funkce server_process_hello() zajišťuje zpracování zprávy ClientHello, kterou server

obdrží od klienta. Nejprve proběhne výběr jedné ze skupin pro výměnu klíčů, které obě

strany podporují. Pokud je zvolen hybridní přístup X25519MLKEM768, server extrahuje

z kombinovaného sdíleného klíče veřejný klíč ML-KEM768 a veřejný klíč X25519. Na

základě těchto údajů vygeneruje svůj vlastní pár klíčů X25519 a následně provede výpočet

dvou dílčích tajemství – jedno pomocí X25519 a druhé pomocí zapouzdření KEM. Oba

výsledky jsou zřetězeny a následně zpracovány funkcí HKDF za účelem získání finálního

sdíleného tajemství. Server poté vytvoří odpověď ServerHello, která obsahuje vybranou

skupinu, výsledné sdílené tajemství a zřetězený sdílený klíč tvořený jeho veřejným klíčem

X25519 a šifrovaným textem vzniklým při zapouzdření KEM. Pokud je místo hybridní

skupiny vybrána pouze klasická skupina X25519, server provede standardní výměnu klíčů

pomocí ECDH a odpověď obsahuje pouze veřejný klíč X25519 a výsledné tajemství.

Funkce client_process_server_hello() zpracovává odpověď serveru a na straně klienta

dopočítává finální sdílené tajemství. V případě hybridní výměny klient rozdělí přijatý

zřetězený sdílený klíč na dvě části: veřejný klíč serveru X25519 a šifrovaný text získaný

zapouzdřením postkvantového klíče ML-KEM768. Klient nejprve spočítá sdílené tajemství

pomocí algoritmu X25519, následně pomocí funkce decapsulate() získá druhou část

tajemství z šifrovaného textu a svého soukromého ML-KEM768 klíče. Obě hodnoty spojí

a vstupem do funkce HKDF() získá finální sdílený klíč. V případě klasického režimu

X25519 proběhne pouze výpočet sdíleného tajemství metodou ECDH() s použitím klientova

soukromého a server veřejného klíče.

6.4 Implementace protokolu

V této kapitole je popsána praktická implementace navrženého TLS-like protokolu, který

využívá hybridní algoritmus nebo klasický algoritmus pro bezpečnou výměnu klíčů mezi

klientem a serverem. Základní funkcionalita výměny klíčů je soustředěna v modulu

72 UTB ve Zlíně, Fakulta aplikované informatiky

tls_core.py, zatímco samotné navázání síťového spojení, výměna zpráv a šifrování

komunikace probíhá ve skriptech client.py a server.py. Obě strany navazují spojení

prostřednictvím TCP socketů a využívají algoritmus AES-GCM (Galois/Counter Mode) pro

šifrování a autentizaci zpráv.

Soubor client.py tvoří klientskou část TLS-like protokolu a slouží k navázání

šifrovaného spojení se serverem. Implementace využívá standardní knihovnu jazyka Python

pro práci se síťovými sockety (socket) a pro výměnu data ve formátu JavaScript Object

Notation (JSON). Díky těmto knihovnám je možné přenášet strukturované zprávy mezi

klientem a serverem přes TCP spojení.

Na začátku skriptu je definována Internet Protocol (IP) adresa a port serveru,

ke kterému se klient připojuje. V rámci lokálního testování je IP adresa nastavena na

127.0.0.1 (localhost) a port na hodnotu 4443. Tato konfigurace zajišťuje, že komunikace

probíhá výhradně lokálně na daném zařízení a je určena pro účely testování.

Klient po spuštění naváže síťové spojení se serverem a inicializuje výměnu klíčů

pomocí funkce client_create_hello() z modulu tls_core.py. Tato funkce vytvoří potřebné

klíčové páry a připraví zprávu ClientHello, která obsahuje informace o podporovaných

kryptografických skupinách a veřejných klíčích klienta. Tato zpráva je serializována do

formátu JSON a odeslána serveru.

Následně klient přijme odpověď ServerHello, kterou zpracuje pomocí funkce

client_process_server_hello() ze stejného modulu. Tato funkce na základě zvolené

kryptografické skupiny vypočítá sdílené tajemství, které je následně použito jako klíč pro

šifrování zpráv.

Po úspěšném navázání spojení klient nejprve přijme šifrovanou zprávu od serveru

a dešifruje ji pomocí algoritmu AES-GCM. Tento úvodní příjem zprávy slouží jako testovací

krok pro ověření, že sdílené tajemství bylo správně vypočítáno a že následná symetrická

šifrovací komunikace funguje. Pro šifrování a dešifrování zpráv je využita knihovna

cryptography, která v jazyce Python poskytuje rozhraní pro bezpečné symetrické šifrování.

Následuje interaktivní režim, ve kterém uživatel klienta může prostřednictvím konzole

zadávat vlastní textové zprávy. Tyto zprávy jsou šifrovány, odeslány serveru, a následně je

očekávána odpověď. Komunikace probíhá v režimu simplexního střídání – vždy je odeslána

jedna zpráva a klient musí nejprve obdržet odpověď od serveru, než může pokračovat

v dalším odesílání.

UTB ve Zlíně, Fakulta aplikované informatiky 73

Soubor server.py tvoří druhou polovinu protokolu a zajišťuje serverovou stranu

šifrované komunikace. Stejně jako klientská část využívá standardní knihovnu socket pro

práci s TCP sockety a knihovnu json pro serializaci dat. Server naslouchá na zvoleném portu,

ve výchozím nastavení 4443, a čeká na navázání spojení klientem.

Po přijetí spojení server obdrží zprávu ClientHello, kterou zpracuje pomocí funkce

server_process_hello() z modulu tls_core.py. Tato funkce zvolí odpovídající

kryptografickou skupinu, extrahuje veřejné klíče z přijatého sdíleného klíče a následně

provede výpočet sdíleného tajemství. Při použití hybridního algoritmu je sdílený klíč

rozdělen na veřejný klíč ML-KEM768 a veřejný klíč X25519, přičemž server provede

zapouzdření KEM a výpočet X25519. Obě hodnoty jsou spojeny a zpracovány pomocí

HKDF.

Po vytvoření odpovědi ServerHello je tato zpráva serializována a odeslána klientovi.

Server následně odešle testovací šifrovanou zprávu, která slouží k ověření, že klient je

schopen správně dešifrovat zprávu pomocí sdíleného tajemství. Pro šifrování zpráv server

rovněž využívá algoritmus AES-GCM prostřednictvím knihovny cryptography.

Po odeslání úvodní zprávy vstupuje server do interaktivního režimu. V tomto režimu

přijímá od klienta šifrované zprávy, které dešifruje a vypisuje na konzoli. Uživatel na straně

serveru může následně zadat odpověď, která je zašifrována a odeslána zpět klientovi.

Komunikace probíhá střídavě, jak již bylo uvedeno v části popisující chování klienta.

6.5 Uživatelské rozhraní

Pro účely lepší demonstrace a ověření výsledků byl vytvořen grafické uživatelský rozhraní

(GUI) samostatně pro serverovou (gui_server.py) i klientskou část (gui_client.py) aplikace.

Obě rozhraní slouží jako jednoduché demo, které umožňuje snadnější ovládání a vizualizaci

základních funkcí navrženého systému. K realizaci GUI byla použita knihovna

customtkinter, která oproti klasické verzi knihovny tkinter umožňuje snadnější úpravu

vzhledu, lepší možnosti stylování a modernější grafické prvky. Princip ovládání a celková

logika aplikace zůstávají obdobné jako v původní konzolové verzi.

Při spuštění aplikace si uživatel nejprve zvolí požadovaný režim komunikace.

K dispozici je buď hybridní režim, kdy jsou zprávy šifrovány kombinací algoritmů X25519

a ML-KEM768, nebo klasický režim využívající pouze X25519 (Obrázek 9 a Obrázek 10).

74 UTB ve Zlíně, Fakulta aplikované informatiky

Zvolený režim ovlivňuje průběh navázání spojení i způsob šifrování následné komunikace

mezi klientem a serverem.

Obrázek 9 Výběr režimu komunikace v klientské

aplikaci

(zdroj: vlastní)

Obrázek 10 Výběr režimu komunikace v

serverové aplikaci

(zdroj: vlastní)

Po výběru režimu komunikace je automaticky navázáno spojení mezi serverovou

a klientskou aplikací. Uživatelské rozhraní je rozděleno do dvou hlavních sekcí – Chat

a Informace. V záložce Informace (Obrázek 11 a Obrázek 12) je zobrazen zvolený režim

UTB ve Zlíně, Fakulta aplikované informatiky 75

(hybridní nebo klasický), včetně konkrétního algoritmu, který aplikace podporuje, buď

hybridní X25519MLKEM768, nebo klasický X25519. V případě zvoleného hybridního

režimu aplikace zároveň podporuje i čistě klasický režim X25519 pro situace, kdy druhá

strana hybridní výměnu klíčů nepodporuje. Po úspěšném navázání spojení je zde také

vypsáno vypočítané sdílené tajemství, což umožňuje ověřit, že server i klient disponují

totožným klíčem. Pod touto hodnotou jsou zobrazeny údaje o objemu odeslaných a přijatých

dat během fáze navazování spojení. Podrobnější analýza rozdílů v datové režii při

navazování spojení je uvedena v kapitole č.7.3 Testování protokolu.

Obrázek 11 Záložka Informace v klientské aplikaci

(zdroj: vlastní)

76 UTB ve Zlíně, Fakulta aplikované informatiky

Obrázek 12 Záložka Informace v serverové aplikaci

(zdroj: vlastní)

V záložce Chat klientské aplikace (Obrázek 13) jsou zobrazovány všechny důležité

informace týkající se navazování spojení a průběhu komunikace se serverem. Uživatel zde

vidí IP adresu a port serveru, ke kterému se připojuje, zprávu o odeslání ClientHello,

následné přijetí ServerHello a potvrzení, že sdílené tajemství bylo úspěšně vypočteno. Tyto

záznamy umožňují jednoduše ověřit správný průběh celého kryptografického procesu

i samotného spojení. Po úspěšném navázání spojení tato záložka nejen zobrazuje všechny

odesílané i přijímané zprávy v rámci zašifrované komunikace, ale zároveň umožňuje

uživateli přímo odesílat nové zprávy a aktivně tak komunikovat se serverem.

UTB ve Zlíně, Fakulta aplikované informatiky 77

Obrázek 13 Záložka Chat v klientské aplikaci

(zdroj: vlastní)

V serverové části aplikace jsou v záložce Chat (Obrázek 14) postupně zaznamenávány

události od naslouchání na zvoleném portu, přes informaci o připojení klienta a jeho IP

adrese, přijetí zprávy ClientHello, výpočet sdíleného tajemství až po odeslání ServerHello.

Záložka umožňuje také přehledně sledovat celou historii komunikace a po úspěšném

navázání spojení nejen zobrazuje všechny zprávy v rámci zašifrované komunikace mezi

klientem a serverem, ale zároveň umožňuje uživateli přímo odesílat nové zprávy a aktivně

tak komunikovat s protistranou.

78 UTB ve Zlíně, Fakulta aplikované informatiky

Obrázek 14 Záložka Chat v serverové aplikaci

(zdroj: vlastní)

Grafické uživatelské rozhraní významně usnadnilo ověření správné funkce

implementovaných algoritmů a umožnilo názorně demonstrovat šifrovanou komunikaci

mezi klientem a serverem. Díky rozdělení na část Chat a Informace bylo možné jednoduše

sledovat klíčové operace i přenosy dat během spojení. GUI tak efektivně podpořilo testování

a prezentaci výsledků práce.

6.6 Struktura a spuštění projektu

Při spuštění projektu prostřednictvím hlavního souboru main.py umístěného v kořenové

složce projektu je spuštěna jak serverová, tak klientská část aplikace. Pro zajištění

paralelního běhu obou částí je využívána knihovna multiprocessing, což umožňuje více

vláknové spouštění.

Při spuštění aplikace je nejprve nutné zvolit režim serverové aplikace a až následně

režim klientské. Tím je zajištěno, že serverová část bude připravena pro navázání spojení

s klientem. Po zvolení těchto režimů je spojení mezi klientskou a serverovou částí

navazováno automaticky.

UTB ve Zlíně, Fakulta aplikované informatiky 79

Podrobný popis postupu spuštění a seznam požadovaných balíčků včetně návodu na

jejich instalaci je uveden v souboru README.md, který je součástí projektu.

Obrázek 15 Diagram struktury projektu

(zdroj: vlastní)

80 UTB ve Zlíně, Fakulta aplikované informatiky

7 TESTOVÁNÍ IMPLEMENTACE

V této kapitole jsou prezentovány výsledky testování implementovaných algoritmů

a navrženého TLS-like protokolu. Provedené testy zahrnují ověření správnosti

implementace pomocí srovnání výsledků s oficiálními testovacími vektory a referenčními

implementacemi, a dále výkonnostní testování zaměřené na měření rychlosti generování

klíčových párů, výpočtu sdíleného tajemství, operací zapouzdření a odpouzdření,

i celkového trvání handshake. Součástí testování bylo také vyhodnocení velikosti

přenášených dat při komunikaci.

Každý výkonnostní test byl proveden opakovaně (100 měření) a výsledky jsou uváděny

jako průměrné hodnoty pro minimalizaci vlivu náhodných odchylek. Pro automatizaci

testování byl použit vlastní skript, který všechna měření zajišťuje a ukládá výsledky ke

zpracování. Výsledky jsou prezentovány v tabulkách a grafech umožňujících přehledné

srovnání jednotlivých implementací.

Testování probíhalo na zařízení MacBook Pro s procesorem Apple M1 Pro, operačním

systému macOS Sequoia (verze 15.4.1), v prostředí Python 3.12.

7.1 Testování X25519

Tato část se věnuje testování implementace algoritmu X25519. Testování zahrnuje ověření

správnosti výměny klíčů a porovnání výsledků s oficiální knihovní implementací. Následně

je provedeno také výkonnostní srovnání obou variant.

7.1.1 Test správnosti

Pro ověření správnosti a funkčnosti implementace algoritmu X25519 byl vytvořen testovací

skript test_x25519.py, který obsahuje dvě samostatné testovací funkce.

První funkce testu simuluje výměnu klíčů mezi dvěma stranami. Každá strana si

vygeneruje vlastní klíčový pár a následně pomocí své privátní hodnoty a veřejné hodnoty

druhé strany spočítá sdílené tajemství. Test ověřuje, zda jsou obě vypočtená sdílená

tajemství identická, jak předpokládá Diffie-Hellmanův princip. Tento test potvrzuje, že

implementace dokáže správně provádět výměnu klíčů.

Druhá funkce v testu porovnává výsledky naší implementace s výsledky oficiální

knihovní implementace X25519 z Python balíčku cryptography. Pro náhodně vygenerovaný

vstupní skalár a veřejný bod se provede výpočet sdíleného tajemství jak pomocí vlastní

UTB ve Zlíně, Fakulta aplikované informatiky 81

funkce x25519(), tak pomocí knihovny. Shoda výsledků potvrzuje korektnost implementace

algoritmu.

7.1.2 Výkonnostní testování

V této části je provedeno výkonnostní porovnání vlastní implementace algoritmu X25519

a oficiální implementace dostupné v knihovně cryptography. Měření zahrnuje průměrné

časy generování klíčových párů a výpočtu sdíleného tajemství.

Tabulka 13 Výkonnostní porovnání vlastní a oficiální implementace X25519

Implementace Generování klíčů (ms) Výpočet sdíleného tajemství (ms)

vlastní 1,599 3,308

cryptography 0,144 0,172

(zdroj: vlastní)

Obrázek 16 Graf výkonnostní porovnání vlastní a oficiální implementace X25519

(zdroj: vlastní)

1,599

0,144

3,308

0,172

0,000

0,500

1,000

1,500

2,000

2,500

3,000

3,500

vlastní cryptography

Čas (ms)

Implementace

Výkonnostní porovnání vlastní a oficiální implementace

X25519

Generování klíčů Výpočet sdíleného tajemství

82 UTB ve Zlíně, Fakulta aplikované informatiky

Jak lze vidět v tabulce (Tabulka 13) i v grafu (Obrázek 16), knihovna cryptography

dosahuje výrazně vyšší výkonnosti než vlastní implementace algoritmu X25519. Podle dat

uvedených v tabulce je generování klíčového páru v knihovně cryptography přibližně 11krát

rychlejší než ve vlastní implementaci a výpočet sdíleného tajemství je dokonce více než

19krát rychlejší. Tyto rozdíly jsou způsobeny tím, že cryptography využívá optimalizované

nativní implementace v jazyce C, zatímco vlastní verze byla implementována výhradně

v jazyce Python bez dalších optimalizací.

7.2 Testování MLKEM768

Tato část se zabývá popisem testování vlastní implementace algoritmu ML-KEM768.

V rámci testů byla posuzována jak správnost implementace, tak výkonnost jednotlivých

operací – konkrétně generování klíčů, zapouzdření a odpouzdření. Výsledky byly

porovnávány s referenční implementací v jazyce Python i s oficiální implementací v jazyce

C, aby bylo možné objektivně zhodnotit funkčnost i efektivitu navrženého řešení.

7.2.1 Test správnosti

Pro ověření správnosti a funkčnosti implementace algoritmu ML-KEM768 byl vytvořen

testovací skript test_mlkem768.py. Tento skript obsahuje sadu testovacích funkcí, které

samostatně ověřují jednotlivé moduly a jejich implementované funkce – například převody

bajtů, hashovací a kryptografické primitivy, vzorkování, NTT, šifrování a dešifrování,

interní funkce KEM i kompletní API rozhraní.

Následně byly porovnávány výstupy hlavních deterministických funkcí vlastní

implementace s výstupy referenční knihovny kyber-py, avšak nebyla zjištěna shoda. Proto

byly dále hledány oficiální KAT testy, které se však nepodařilo dohledat, a dostupné

testovací vektory rovněž neodpovídaly hodnotám generovaným implementací. Navíc

v průběhu ladění byly zjištěny dílčí nesrovnalosti v knihovně kyber-py (například odlišnost

v hashovací funkci H(), kde je výsledku přičítán navíc jeden bajt), což komplikovalo přímé

porovnání. Porovnání s oficiální implementací v jazyce C bylo omezené kvůli uzavřenosti

interních funkcí a využití interního generátoru náhodných čísel, což znemožnilo detailní

kontrolu mezivýsledků.

V průběhu analýzy bylo zjištěno, že v implementaci dochází k nesprávnému generování

K-PKE klíčů, což se odráží v odlišných výsledcích při porovnávání s testovacími vektory

i s výstupy knihovny kyber-py. Tato chyba se projevuje zejména ve fázi generování

UTB ve Zlíně, Fakulta aplikované informatiky 83

klíčového páru, kde některé hodnoty neodpovídají očekávaným výsledkům dle specifikace

algoritmu ML-KEM768.

Navzdory těmto obtížím jsou klíče i zašifrované texty generovány ve správné délce, je

umožněno korektní šifrování a dešifrování zpráv a všechny základní operace fungují

v souladu se specifikací.

7.2.2 Výkonnostní testování

V této části je analyzována výkonnost algoritmu ML-KEM768. Testování zahrnuje tři

základní operace algoritmu – generování klíčového páru, zapouzdření sdíleného tajemství

a jeho následné odpouzdření. Výkon vlastní implementace byl porovnáván s další čistě

Pythonovou implementací využívající knihovnu kyber-py, která poskytuje funkční, ale

neoptimalizovanou verzi algoritmu. Dále byl výkon porovnán s oficiální referenční

implementací využívající knihovnu liboqs, která poskytuje optimalizované implementace

v jazyce C zpřístupněné prostřednictvím Python wrapperu oqs-python. Tímto způsobem

bylo možné srovnat tři úrovně implementací – vlastní studijní řešení, existující Pythonovou

knihovnu a vysoce optimalizovanou C implementaci.

Tabulka 14 Výkonnostní porovnání funkcí vlastní a referenčních implementací

ML-KEM768

Implementace Generování

klíčů (ms)

Zapouzdření

(ms)

Odpouzdření

(ms)

Celý KEM

proces (ms)

vlastní 6,074 15,181 10,680 26,284

kyber-py 2,327 5,505 4,111 9,360

liboqs 0,019 0,034 0,017 0,052

(zdroj: vlastní)

84 UTB ve Zlíně, Fakulta aplikované informatiky

Obrázek 17 Graf Výkonnostní porovnání funkcí ML-KEM u jednotlivých implementací

(zdroj: vlastní)

Obrázek 18 Graf Výkonnostní porovnání celého procesu ML-KEM u jednotlivých

implementací

(zdroj: vlastní)

6,074

2,327

0,019

15,181
5,505

0,034

10,680

4,111

0,017

0,010

0,100

1,000

10,000

100,000

vlastní kyber-py liboqs

Čas (ms)

Implementace

Výkonnostní porovnání funkcí vlastní a referenčních implementací

Generování klíčů Zapouzdření Odpouzdření

26,284

9,360

0,052

0,010

0,100

1,000

10,000

100,000

vlastní kyber-py liboqs

Čas (ms)

Implementace

Výkonnostní porovnání celého procesu ML-KEM u jednotlivých

implementací

UTB ve Zlíně, Fakulta aplikované informatiky 85

Výsledky uvedené v tabulce (Tabulka 14) a grafech (Obrázek 17 a 18) ukazují výrazné

rozdíly ve výkonnosti jednotlivých implementací algoritmu ML-KEM768. Nejpomalejší je

vlastní implementace v jazyce Python, u které celý proces trvá přibližně trojnásobek času

oproti čistě Pythonové knihovně kyber-py. Výrazný nárůst výkonu je vidět při použití

knihovny liboqs, která díky optimalizované C implementaci dosahuje více než

500násobného zrychlení oproti vlastní implementaci. Použití vysoce optimalizovaných

knihoven je tak klíčové pro praktické nasazení kvantově odolných algoritmů v reálných

systémech, kde je vysoká výkonnost nezbytná.

7.3 Testování protokolu

Tato část se zaměřuje na ověření správnosti a výkonnosti navrženého TLS-like protokolu

v různých režimech výměny klíčů. Testování zahrnuje simulaci navazování zabezpečeného

spojení mezi klientem a serverem, kde je posuzována shoda vypočítaných sdílených

tajemství i porovnání výkonnostních parametrů, jako je délka handshaku a objem

přenesených dat. Výsledky umožňují posoudit dopad použití postkvantových technik na

efektivitu a datovou náročnost zabezpečené komunikace.

7.3.1 Testování správnosti

Pro účely ověření před samotným použitím v síťové komunikaci byl vytvořen testovací

skript test_tls_handshake.py. Tento soubor simuluje proces navázání zabezpečeného spojení

mezi klientem a serverem pro obě varianty – jak hybridní výměnu klíčů, tak klasickou

výměnu. V každé simulaci je ověřeno, že obě strany nezávisle vypočítají totožné sdílené

tajemství, čímž je potvrzena správnost celé výměny. Testování probíhá výhradně lokálně

v rámci jednoho skriptu, bez použití skutečné síťové komunikace.

7.3.2 Výkonnostní testování

V této části jsou prezentovány výsledky výkonnostního testování tří režimů TLS-like

protokolu. Měřeny byly všechny klíčové varianty: hybridní handshake využívající

kombinaci algoritmů X25519 a ML-KEM768, záložní handshake, kdy klient podporuje

hybridní výměnu, ale server podporuje pouze klasický X25519, a nakonec čistý handshake

realizovaný pouze pomocí algoritmu X25519 na obou stranách. Cílem testování bylo

porovnat průměrné časy trvání jednotlivých handshake procesů a analyzovat vliv použití

postkvantových technik na celkovou rychlost navázání šifrovaného spojení.

86 UTB ve Zlíně, Fakulta aplikované informatiky

Tabulka 15 Porovnání průměrné doby handshaku

jednotlivých režimů

Režim Průměrný čas handshaku (ms)

hybridní 33,551

záložní 13,786

klasický 6,356

(zdroj: vlastní)

Obrázek 19 Graf porovnání průměrné doby handshaku jednotlivých režimů

(zdroj: vlastní)

Jak ukazují výsledky v tabulce (Tabulka 15) a grafu (Obrázek 19), hybridní handshake

využívající postkvantový algoritmus ML-KEM768 je výrazně pomalejší než klasický režim

postavený čistě na algoritmu X25519 – konkrétně je přibližně 5krát pomalejší. Zajímavý je

také mezistupeň záložní režim, kdy klient podporuje hybridní výměnu, ale server pouze

klasickou. Tento režim je přibližně 2krát pomalejší než klasický handshake, ale stále výrazně

33,551

13,786

6,356

0,000

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

hybridní záložní klasický

Čas (ms)

Režim

Porovnání průměrné doby handshaku jednotlivých

režimů

UTB ve Zlíně, Fakulta aplikované informatiky 87

rychlejší než plně hybridní varianta. Nižší výkon záložního režimu je způsoben tím, že klient

i v tomto případě generuje klíče pro ML-KEM768, které však nejsou serverem využity.

Výsledky jednoznačně ukazují výkonnostní náklady spojené s nasazením postkvantových

algoritmů v rámci TLS-like protokolu.

Dále byla změřena velikost přenesených dat v jednotlivých režimech handshake. Byla

zaznamenána velikost odeslaných dat ze strany klienta, přijatých dat od serveru a jejich

součet, který představuje celkový objem přenesených dat během fáze navazování spojení.

Tabulka 16 Porovnání velikosti přenesených dat během handshake v jednotlivých režimech

Režim Odeslaná data (B) Přijatá data (B) Celková přenesená

data (B)

hybridní 7675 2420 10 095

záložní 7675 233 7908

klasický 286 233 519

(zdroj: vlastní)

Obrázek 20 Graf porovnání velikosti přenesených dat jednotlivých režimů

(zdroj: vlastní)

7675 7675

286

2420

233 233

10 095

7908

519

0

2000

4000

6000

8000

10000

12000

hybridní záložní klasický

Data (B)

Režim

Porovná velikosti přenesených dat jednotlivých režimů

Odeslaná data Přijatá data Celková přenesená data

88 UTB ve Zlíně, Fakulta aplikované informatiky

Jak ukazuje tabulka a graf, hybridní handshake přenáší přibližně 20krát více dat než

klasický handshake. Záložní režim přenáší přibližně 15krát více dat ve srovnání s klasickým

režimem. Výrazné navýšení objemu přenesených dat v hybridním režimu je způsobeno

přenosem rozměrného veřejného klíče ML-KEM768 a odpovídajícího šifrovaného textu.

I když záložní režim eliminuje část komunikace spojenou s hybridním odpovědí serveru,

klient stále posílá hybridní sdílený klíč, což způsobuje výrazně vyšší přenos dat oproti

čistému X25519 handshaku. Výsledky jednoznačně potvrzují, že nasazení postkvantových

kryptografických prvků přináší významné zvýšení datové režie při navazování

zabezpečeného spojení.

7.4 Shrnutí testů

Provedené testy potvrdily, že všechny klíčové algoritmy i navržený TLS-like protokol

fungují dle očekávání. U algoritmu X25519 byla ověřena správná realizace výměny klíčů

i shoda výsledků s oficiální knihovní implementací, přestože vlastní řešení vykazuje nižší

výkonnost kvůli absenci optimalizací. V případě ML-KEM768 byly sice zaznamenány

nesrovnalosti při porovnávání s referenčními testovacími vektory a knihovnou kyber-py,

základní operace jako šifrování, dešifrování i generování klíčů však probíhají v souladu se

specifikací.

Výkonnostní testy jednoznačně ukázaly, že použití optimalizovaných implementací,

zejména v jazyce C, přináší řádově vyšší rychlost oproti čistě Pythonovým řešením. Největší

rozdíly byly zaznamenány u ML-KEM768, kde optimalizovaná knihovna liboqs dosahuje

180násobného zrychlení oproti knihovně kyber-py.

Testování TLS-like protokolu dále potvrdilo, že nasazení postkvantových algoritmů

v hybridním režimu znamená výrazné zvýšení časových i datových nároků

handshake - handshake je až pětkrát pomalejší a objem přenesených dat až dvacetkrát vyšší

oproti klasickému režimu X25519.

Celkově lze shrnout, že použití postkvantových algoritmů přináší očekávané

kompromisy v podobě vyšší výpočetní a datové náročnosti. Pro praktické nasazení je tak

zásadní využívat optimalizované implementace, které tyto limity výrazně zmírňují.

UTB ve Zlíně, Fakulta aplikované informatiky 89

ZÁVĚR

Tato bakalářská práce byla zaměřena na postkvantovou kryptografii se zvláštním důrazem

na praktickou implementaci a testování hybridního algoritmu X25519MLKEM768. Cílem

bylo analyzovat aktuální stav v této oblasti, implementovat a ověřit funkčnost hybridního

protokolu a porovnat jeho efektivitu s klasickými přístupy. Pracovní hypotéza

předpokládala, že zavedení postkvantových mechanismů povede ke zvýšení výpočetní

i datové náročnosti při navazování šifrovaného spojení.

V teoretické části byly nejprve shrnuty hlavní důvody pro přechod k postkvantové

kryptografii v souvislosti s hrozbou kvantových útoků. Byly popsány klíčové kategorie

kvantově odolných algoritmů a rozebrán současný stav jejich vývoje a standardizace,

především v rámci amerického institutu NIST, včetně přehledu finalistů a doporučení

relevantních institucí, jako je NÚKIB. Práce také zhodnotila silné a slabé stránky

jednotlivých přístupů a klíčová kritéria pro jejich výběr.

Praktická část práce byla zaměřena na vlastní implementaci algoritmů X25519

a ML-KEM768 a návrh TLS-like protokolu, který tyto algoritmy kombinuje pro bezpečnou

výměnu klíčů v prostředí ohroženém kvantovými útoky. Funkčnost a správnost řešení byla

ověřena prostřednictvím sady testovacích skriptů. Výsledky testování potvrdily, že nasazení

hybridního postkvantového algoritmu skutečně znamená nárůst výpočetní i datové

náročnosti handshake v porovnání s čistě klasickým protokolem, což potvrzuje původní

pracovní hypotézu. Dále bylo zjištěno, že výkonnost implementací je významně ovlivněna

volbou programovacího jazyka a mírou optimalizace kódu.

Přínosem práce je praktická demonstrace možností a omezení hybridních

postkvantových řešení, která může posloužit jako základ pro další optimalizaci a výzkum.

Pro další rozvoj v této oblasti doporučuji zaměřit se na zlepšení efektivity implementace,

integraci nových standardů, rozšíření testování na reálné síťové prostředí a podrobnou

bezpečnostní analýzu, včetně odolnosti vůči konkrétním útokům a minimalizaci datové režie

při zachování vysoké úrovně bezpečnosti i v budoucích podmínkách kvantové hrozby.

UTB ve Zlíně, Fakulta aplikované informatiky 91

SEZNAM POUŽITÉ LITERATURY

[1] MOSCA, Michele a PIANI, Marco. Quantum Threat Timeline Report 2024:

Executive Summary. Online. 2024. Toronto: Global Risk Institute, 2024. Dostupné z:

https://globalriskinstitute.org/publication/2024-quantum-threat-timeline-report/. [cit.

2025-01-22].

[2] BAVDEKAR, Ritik; JAYANT CHOPDE, Eashan; BHATIA, Ashutosh; TIWARI,

Kamlesh a SANDEEP, Daniel Joshua. Post Quantum Cryptography: Techniques,

Challenges, Standardization, and Directions for Future Research. Online. 2022.

ArXiv, 2022. Dostupné z: https://doi.org/10.48550/arXiv.2202.02826. [cit. 2025-01-

21].

[3] PROOS, John a ZALKA, Christof. Shor’s discrete logarithm quantum algorithm for

elliptic curves. Online. V2. Waterloo: University of Waterloo, 2004. Dostupné z:

https://arxiv.org/abs/quant-ph/0301141v2. [cit. 2025-01-22].

[4] GROVER, Lov K. A fast quantum mechanical algorithm for database search. Online.

Proceedings of the 28th Annual ACM Symposium on Theory of Computing. 1996, s.

212–219. Dostupné z: https://doi.org/10.1145/237814.237866. [cit. 2025-01-25].

[5] PROKOP, Miloš; WALLDEN, Petros a JOSEPH, David. Grover’s Oracle for the

Shortest Vector Problem and Its Application in Hybrid Classical–Quantum Solvers.

Online. IEEE Transactions on Quantum Engineering. 2025, roč. 6, s. 1–15. Dostupné

z: https://doi.org/10.48550/arXiv.2402.13895. [cit. 2025-01-25].

[6] BERNSTEIN, Daniel J. a DAHMEN, Erik (ed.). Post-Quantum Cryptography.

Online. Berlin, Heidelberg: Springer-Verlag, 2009. ISBN 978-3-540-88702-7.

Dostupné z: https://doi.org/10.1007/978-3-540-88702-7. [cit. 2024-10-18].

[7] MAMATHA, G. S.; DIMRI, Namya a SINHA, Rasha. Post-Quantum Cryptography:

Securing Digital Communication in the Quantum Era. Online. ArXiv, 2024.

Dostupné z: https://arxiv.org/abs/2403.11741. [cit. 2025-01-26].

[8] MICCIANCIO, Daniele a REGEV, Oded. Lattice-based Cryptography. Online. In:

Advances in Cryptology: Proceedings of the 26th Annual Cryptology Conference

(CRYPTO’06). 2009, s. 147–191. ISBN 978-3-540-88701-0. Dostupné z:

https://cims.nyu.edu/~regev/papers/pqc.pdf. [cit. 2025-01-26].

[9] NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY. FIPS 203,

Module-Lattice-Based Key-Encapsulation Mechanism Standard. Federal Information

Processing Standards Publication (FIPS) NIST FIPS 203. Department of Commerce,

Washington, D.C., 2024. Dostupné také z: https://doi.org/10.6028/NIST.FIPS.203.

[10] NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY. FIPS 204,

Module-Lattice-Based Digital Signature Standard. Federal Information Pro- cessing

Standards Publication (FIPS) NIST FIPS 204. Department of Commerce,

Washington, D.C., 2024. Dostupné také z: https://doi.org/10.6028/NIST.FIPS.204.

[11] DAVLETOVA, Alina; YATSKIV, Vasyl; IVASIEV, Stepan a KARPINSKYI,

Mykola. Encryption Method Based on Codes. Online. ADVANCES IN CYBER-

PHYSICAL SYSTEMS. 2024, roč. 9, č. 1, s. 24-31. Dostupné z:

https://doi.org/10.23939/acps2024.01.024. [cit. 2025-05-24].

https://globalriskinstitute.org/publication/2024-quantum-threat-timeline-report/
https://doi.org/10.48550/arXiv.2202.02826
https://arxiv.org/abs/quant-ph/0301141v2
https://doi.org/10.1145/237814.237866
https://doi.org/10.48550/arXiv.2402.13895
https://doi.org/10.1007/978-3-540-88702-7
https://arxiv.org/abs/2403.11741
https://cims.nyu.edu/~regev/papers/pqc.pdf
https://doi.org/10.23939/acps2024.01.024

92 UTB ve Zlíně, Fakulta aplikované informatiky

[12] LICHTINGER, Jacob; MILLER, Carl; MOODY, Dustin; PERALTA, Rene;

PERLNER, Ray et al. Status Report on the Third Round of the NIST Post-Quantum

Cryptography Standardization Process. Online. NIST IR 8413. Gaithersburg, MD:

National Institute of Standards and Technology, 2022. Dostupné z:

https://doi.org/10.6028/NIST.IR.8413. [cit. 2025-01-17].

[13] HÜLSING, Andreas; GAZDAG, Stefan - Lukas; BUTIN, Denis a BUCHMANN,

Johannes. Hash-based Signatures: An Outline for a New Standard. Online. In:

Workshop on Cybersecurity in a Post-Quantum World. USA: NIST, 2015. Dostupné

z: https://csrc.nist.gov/csrc/media/events/workshop-on-cybersecurity-in-a-post-

quantum-world/documents/papers/session5-hulsing-paper.pdf. [cit. 2025-01-30].

[14] NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY. FIPS 205,

Stateless Hash-Based Digital Signature Standard. Federal Information Processing

Standards Publication (FIPS) NIST FIPS 205. Department of Commerce,

Washington, D.C., 2024. Dostupné také z: https: //doi.org/10.6028/NIST.FIPS.205.

[15] NÁRODNÍ ÚŘAD PRO KYBERNETICKOU A INFORMAČNÍ BEZPEČNOST.

Minimální požadavky na kryptografické algoritmy – Příloha: Kvantová hrozba a

kvantově odolná kryptografie. Online. Verze 2.0. NÚKIB, 2025. Dostupné z:

https://nukib.gov.cz/download/uredni_deska/Minimalni_pozadavky_Priloha_v2_FI

NAL.pdf. [cit. 2025-03-17].

[16] ARPIN, Sarah; CAMACHO-NAVARRO, Catalina; LAUTER, Kristin; LIM, Joelle;

NELSON, Kristina et al. Adventures in Supersingularland. Online. Experimental

Mathematics. 2019, č. 2, s. 241-268. Dostupné z:

https://doi.org/10.1080/10586458.2021.1926009. [cit. 2025-02-13].

[17] SIKE Foreword and Postscript. Online. SIKE team, 2022. Dostupné také z:

https://csrc.nist.gov/csrc/media/Projects/post-quantum-

cryptography/documents/round-4/submissions/sike-team-note-insecure.pdf.

[18] TESKE, Edlyn. NIST PQC Finalists Update: It’s Over for the Rainbow. Online.

Cryptomathic. 2022. Dostupné z: https://www.cryptomathic.com/blog/nist-pqc-

finalists-update-its-over-for-the-rainbow. [cit. 2025-02-12].

[19] Minimální požadavky na kryptografické algoritmy. Online. 4.0. Brno: NÚKIB, 2025.

Dostupné z:

https://nukib.gov.cz/download/uredni_deska/Minimalni_pozadavky_v4_FINAL.pdf.

[cit. 2025-01-23].

[20] KUMAR, Manish. Post-Quantum Cryptography Algorithm’s Standardization and

Performance Analysis. Online. 2022. Dostupné také z:

https://arxiv.org/abs/2204.02571.

[21] CHEN, Lily; JORDAN, Stephen; LU, Yi-Kai; MOODY, Dustin; PERALTA, Rene et

al. Report on Post-Quantum Cryptography. Online. NISTIR 8105. Gaithersburg, MD:

National Institute of Standards and Technology, 2016. Dostupné z:

http://dx.doi.org/10.6028/NIST.IR.8105. [cit. 2025-01-01].

[22] ALAGIC, Gorjan; ALPERIN-SHERIFF, Jacob; APON, Daniel; COOPER, David;

DANG, Quynh et al. Status Report on the First Round of the NIST Post-Quantum

Cryptography Standardization Process. Online. NISTIR 8240. Gaithersburg, MD:

National Institute of Standards and Technology, 2019. Dostupné z:

https://doi.org/10.6028/NIST.IR.8240. [cit. 2025-01-17].

https://doi.org/10.6028/NIST.IR.8413
https://csrc.nist.gov/csrc/media/events/workshop-on-cybersecurity-in-a-post-quantum-world/documents/papers/session5-hulsing-paper.pdf
https://csrc.nist.gov/csrc/media/events/workshop-on-cybersecurity-in-a-post-quantum-world/documents/papers/session5-hulsing-paper.pdf
https://nukib.gov.cz/download/uredni_deska/Minimalni_pozadavky_Priloha_v2_FINAL.pdf
https://nukib.gov.cz/download/uredni_deska/Minimalni_pozadavky_Priloha_v2_FINAL.pdf
https://doi.org/10.1080/10586458.2021.1926009
https://csrc.nist.gov/csrc/media/Projects/post-quantum-cryptography/documents/round-4/submissions/sike-team-note-insecure.pdf
https://csrc.nist.gov/csrc/media/Projects/post-quantum-cryptography/documents/round-4/submissions/sike-team-note-insecure.pdf
https://www.cryptomathic.com/blog/nist-pqc-finalists-update-its-over-for-the-rainbow
https://www.cryptomathic.com/blog/nist-pqc-finalists-update-its-over-for-the-rainbow
https://nukib.gov.cz/download/uredni_deska/Minimalni_pozadavky_v4_FINAL.pdf
https://arxiv.org/abs/2204.02571
http://dx.doi.org/10.6028/NIST.IR.8105
https://doi.org/10.6028/NIST.IR.8240

UTB ve Zlíně, Fakulta aplikované informatiky 93

[23] ALAGIC, Gorjan; ALPERIN-SHERIFF, Jacob; APON, Daniel; COOPER, David;

DANG, Quynh et al. Status Report on the Second Round of the NIST Post-Quantum

Cryptography Standardization Process. Online. NISTIR 8309. Gaithersburg, MD:

National Institute of Standards and Technology, 2020. Dostupné z:

https://doi.org/10.6028/NIST.IR.8309. [cit. 2025-01-17].

[24] NIST. NIST Releases First 3 Finalized Post-Quantum Encryption Standards. Online.

2024. Dostupné z: https://www.nist.gov/news-events/news/2024/08/nist-releases-

first-3-finalized-post-quantum-encryption-standards. [cit. 2025-02-26].

[25] Portál NÚKIB nově podporuje kvantově odolnou kryptografii. Online. Národní úřad

pro kybernetickou a informační bezpečnost. 2024. Dostupné z:

https://nukib.gov.cz/cs/infoservis/aktuality/2156-portal-nukib-nove-podporuje-

kvantove-odolnou-kryptografii/#jak-zjistim-ze-komunikace-s-portalem-nukib-je-

zabezpecena-postkvantovym-sifrovanim. [cit. 2025-01-23].

[26] NATIONAL SECURITY AGENCY. Post-Quantum Cryptography: CISA, NIST, and

NSA Recommend How to Prepare Now. Online. 2023. Dostupné z:

https://www.nsa.gov/Press-Room/Press-Releases-Statements/Press-Release-

View/Article/3498776/post-quantum-cryptography-cisa-nist-and-nsa-recommend-

how-to-prepare-now/. [cit. 2025-03-18].

[27] NATIONAL SECURITY AGENCY. The Commercial National Security Algorithm

Suite 2.0 and Quantum Computing FAQ. Online. Ver 2.1. 2024. Dostupné také z:

https://media.defense.gov/2022/Sep/07/2003071836/-1/-

1/0/CSI_CNSA_2.0_FAQ_.PDF.

[28] EUROPEAN UNION. Securing Tomorrow, Today: Transitioning to Post- Quantum

Cryptography. Online. 2024. Dostupné také z:

https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Crypto/PQC-joint-

statement.pdf?__blob=publicationFile&v=5.

[29] SWAYNE, Matt. China Launches Its Own Quantum-Resistant Encryption Standards,

Bypassing US Efforts. Online. In: Quantum Insider. 2025. Dostupné z:

https://thequantuminsider.com/2025/02/18/china-launches-its-own-quantum-

resistant-encryption-standard-bypassing-us-efforts/. [cit. 2025-03-18].

[30] INSTITUTE OF COMMERCIAL CRYPTOGRAPHY STANDARDS.

Announcement on Launching the Next-generation Commercial Cryptographic

Algorithms Program (NGCC). Online. In: Institute of Commercial Cryptography

Standards. 2025. Dostupné z: https://www.niccs.org.cn/en/. [cit. 2025-03-18].

[31] CHOUCAIR, Cierra. South Korea Launches Quantum Strategy Comittee, Allocates

$15M Annually For Quantum Startups, But Some Warn It Falls Short. Online. In:

Quantum Insider. 2025. Dostupné z:

https://thequantuminsider.com/2025/03/13/south-korea-launches-quantum-strategy-

comittee-allocates-15m-annually-for-quantum-startups-but-some-warn-it-falls-

short/. [cit. 2025-03-18].

[32] QUANTUM NEWS. PQShield has announced its membership of Japanese Cyber

Research Consortium. Online. In: Quantum Zeitgeist. 2025. Dostupné z:

https://quantumzeitgeist.com/pqshield-has-announced-its-membership-of-japanese-

cyber-research-consortium/. [cit. 2025-03-18].

[33] PATHUM, Udara. X25519Kyber768 Post-Quantum Key Exchange for HTTPS

Communication. Online. In: Medium. 2024. Dostupné z:

https://medium.com/@hwupathum/x25519kyber768-post-quantum-key-exchange-

for-https-communication-70eba681931d. [cit. 2025-03-19].

https://doi.org/10.6028/NIST.IR.8309
https://www.nist.gov/news-events/news/2024/08/nist-releases-first-3-finalized-post-quantum-encryption-standards
https://www.nist.gov/news-events/news/2024/08/nist-releases-first-3-finalized-post-quantum-encryption-standards
https://nukib.gov.cz/cs/infoservis/aktuality/2156-portal-nukib-nove-podporuje-kvantove-odolnou-kryptografii/#jak-zjistim-ze-komunikace-s-portalem-nukib-je-zabezpecena-postkvantovym-sifrovanim
https://nukib.gov.cz/cs/infoservis/aktuality/2156-portal-nukib-nove-podporuje-kvantove-odolnou-kryptografii/#jak-zjistim-ze-komunikace-s-portalem-nukib-je-zabezpecena-postkvantovym-sifrovanim
https://nukib.gov.cz/cs/infoservis/aktuality/2156-portal-nukib-nove-podporuje-kvantove-odolnou-kryptografii/#jak-zjistim-ze-komunikace-s-portalem-nukib-je-zabezpecena-postkvantovym-sifrovanim
https://www.nsa.gov/Press-Room/Press-Releases-Statements/Press-Release-View/Article/3498776/post-quantum-cryptography-cisa-nist-and-nsa-recommend-how-to-prepare-now/
https://www.nsa.gov/Press-Room/Press-Releases-Statements/Press-Release-View/Article/3498776/post-quantum-cryptography-cisa-nist-and-nsa-recommend-how-to-prepare-now/
https://www.nsa.gov/Press-Room/Press-Releases-Statements/Press-Release-View/Article/3498776/post-quantum-cryptography-cisa-nist-and-nsa-recommend-how-to-prepare-now/
https://media.defense.gov/2022/Sep/07/2003071836/-1/-1/0/CSI_CNSA_2.0_FAQ_.PDF
https://media.defense.gov/2022/Sep/07/2003071836/-1/-1/0/CSI_CNSA_2.0_FAQ_.PDF
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Crypto/PQC-joint-statement.pdf?__blob=publicationFile&v=5
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Crypto/PQC-joint-statement.pdf?__blob=publicationFile&v=5
https://thequantuminsider.com/2025/02/18/china-launches-its-own-quantum-resistant-encryption-standard-bypassing-us-efforts/
https://thequantuminsider.com/2025/02/18/china-launches-its-own-quantum-resistant-encryption-standard-bypassing-us-efforts/
https://www.niccs.org.cn/en/
https://thequantuminsider.com/2025/03/13/south-korea-launches-quantum-strategy-comittee-allocates-15m-annually-for-quantum-startups-but-some-warn-it-falls-short/
https://thequantuminsider.com/2025/03/13/south-korea-launches-quantum-strategy-comittee-allocates-15m-annually-for-quantum-startups-but-some-warn-it-falls-short/
https://thequantuminsider.com/2025/03/13/south-korea-launches-quantum-strategy-comittee-allocates-15m-annually-for-quantum-startups-but-some-warn-it-falls-short/
https://quantumzeitgeist.com/pqshield-has-announced-its-membership-of-japanese-cyber-research-consortium/
https://quantumzeitgeist.com/pqshield-has-announced-its-membership-of-japanese-cyber-research-consortium/
https://medium.com/@hwupathum/x25519kyber768-post-quantum-key-exchange-for-https-communication-70eba681931d
https://medium.com/@hwupathum/x25519kyber768-post-quantum-key-exchange-for-https-communication-70eba681931d

94 UTB ve Zlíně, Fakulta aplikované informatiky

[34] BERNSTEIN, Daniel J. Curve25519: new Diffie-Hellman speed records. Online.

2006. Dostupné také z: https://cr.yp.to/ecdh/curve25519-20060209.pdf.

[35] SCHAUMANN, Jan. TLS 1.3 Hybrid Key Exchange using X25519Kyber768 / ML-

KEM. Online. In: Signs of Triviality. 2024. Dostupné z:

https://www.netmeister.org/blog/tls-hybrid-kex.html. [cit. 2025-03-19].

[36] SCHAUMANN, Jan. Post-Quantum Cryptography in February 2025. Online. In:

Signs of Triviality. 2025. Dostupné z: https://www.netmeister.org/blog/pqc-2025-

02.html. [cit. 2025-03-19].

[37] GIRON, Alexandre Augusto; ADAMI DO NASCIMENTO, Joao Pedro;

CUSTODIO, Ricardo a PERIN, Lucas Pandolfo. Post-Quantum Hybrid KEMTLS

Performance in Simulated and Real Network Environments. Online. Florianópolis,

Brazil: Federal University of Santa Catarina (UFSC), 2022. Dostupné také z:

https://eprint.iacr.org/2022/1639.pdf.

[38] OUNSWORTH, M.; GRAY, J.; PALA, M.; KLAUSSNER, J. a FLUHRER, S.

Composite ML-KEM for use in X.509 Public Key Infrastructure and CMS. Online.

2024. Dostupné také z: https://www.ietf.org/archive/id/draft-ietf-lamps-pq-

composite-kem-05.html.

[39] KLEPPMANN, MARTIN. Implementing Curve25519/X25519: A Tutorial on Elliptic

Curve Cryptography. Online. University of Cambridge, United Kingdom, 2021.

Dostupné také z: https://www.cl.cam.ac.uk/teaching/2122/Crypto/curve25519.pdf.

https://cr.yp.to/ecdh/curve25519-20060209.pdf
https://www.netmeister.org/blog/tls-hybrid-kex.html
https://www.netmeister.org/blog/pqc-2025-02.html
https://www.netmeister.org/blog/pqc-2025-02.html
https://eprint.iacr.org/2022/1639.pdf
https://www.ietf.org/archive/id/draft-ietf-lamps-pq-composite-kem-05.html
https://www.ietf.org/archive/id/draft-ietf-lamps-pq-composite-kem-05.html
https://www.cl.cam.ac.uk/teaching/2122/Crypto/curve25519.pdf

UTB ve Zlíně, Fakulta aplikované informatiky 95

SEZNAM OBRÁZKŮ

Obrázek 1 Dvourozměrná mřížka a dvě možné báze .. 17

Obrázek 2 Schéma McElieceova kryptosystému ... 18

Obrázek 3 Merkeleho strom s výškou 3 .. 19

Obrázek 4 Graf výkonnostní testy KEM algoritmů na x86-64 procesorech s rozšířeními

AVX2 ... 29

Obrázek 5 Graf výkonnostní testy algoritmů pro digitální podpisy na x86-64 procesorech

s AVX2 rozšířeními ... 30

Obrázek 6 Zjednodušené schéma KEM ... 35

Obrázek 7 Struktura podpisu SLH-DSA v hierarchii hyperstrom 47

Obrázek 8 Zjednodušený princip fungování hybridního algoritmu X25519MLKEM768 .. 57

Obrázek 9 Výběr režimu komunikace v klientské aplikaci ... 74

Obrázek 10 Výběr režimu komunikace v serverové aplikaci .. 74

Obrázek 11 Záložka Informace v klientské aplikaci ... 75

Obrázek 12 Záložka Informace v serverové aplikaci .. 76

Obrázek 13 Záložka Chat v klientské aplikaci .. 77

Obrázek 14 Záložka Chat v serverové aplikaci ... 78

Obrázek 15 Diagram struktury projektu .. 79

Obrázek 16 Graf výkonnostní porovnání vlastní a oficiální implementace X25519 81

Obrázek 17 Graf Výkonnostní porovnání funkcí ML-KEM u jednotlivých implementací. 84

Obrázek 18 Graf Výkonnostní porovnání celého procesu ML-KEM u jednotlivých

implementací .. 84

Obrázek 19 Graf porovnání průměrné doby handshaku jednotlivých režimů 86

Obrázek 20 Graf porovnání velikosti přenesených dat jednotlivých režimů 87

96 UTB ve Zlíně, Fakulta aplikované informatiky

SEZNAM TABULEK

Tabulka 1 Porovnání postkvantových přístupů .. 22

Tabulka 2 Seznam algoritmů vybraných do druhého kola standardizace 25

Tabulka 3 Seznam finalistů do třetího kola ... 26

Tabulka 4 Seznam alternativních kandidátů do třetího kola .. 27

Tabulka 5 Seznam algoritmů určených ke standardizaci ... 32

Tabulka 6 Seznam kandidátů do čtvrtého kola .. 32

Tabulka 7 Porovnání parametrů jednotlivých variant FIPS 203 .. 34

Tabulka 8 Porovnání variant FIPS 203 .. 35

Tabulka 9 Porovnání parametrů jednotlivých variant FIPS 204 .. 40

Tabulka 10 Porovnání variant FIPS 204 .. 40

Tabulka 11 Porovnání variant s režimem provozu „s“ FIPS 205 .. 44

Tabulka 12 Porovnání variant s režimem provozu „f“ FIPS 205 .. 45

Tabulka 13 Výkonnostní porovnání vlastní a oficiální implementace X25519 81

Tabulka 14 Výkonnostní porovnání funkcí vlastní a referenčních implementací

ML-KEM768 ... 83

Tabulka 15 Porovnání průměrné doby handshaku jednotlivých režimů.............................. 86

Tabulka 16 Porovnání velikosti přenesených dat během handshake v jednotlivých režimech

 .. 87

UTB ve Zlíně, Fakulta aplikované informatiky 97

SEZNAM POUŽITÝCH SYMBOLŮ A ZKRATEK

AES Advanced Encryption Standard (Pokročilý šifrovací standard)

ARM Advanced RISC Machine (architektura pokročilého RISC procesoru)

AWS Amazon Web Services (webové služby Amazonu)

AVX2 Advanced Vector Extensions 2 (rozšíření vektorových instrukcí 2)

BIKE Bit Flipping Key Encapsulation (zapouzdření klíče s bitovým překlápěním)

BKZ Block Korkine-Zolotarev (blokový algoritmus Korkin-Zolotarev

pro redukci mřížek)

CBD Centered Binomial Distribution (centrální binomické rozdělení)

CNSA Commercial National Security Algorithm Suite

(sada algoritmů pro národní bezpečnost, komerční použití)

CVP Closest Vector Problem (problém nejbližšího vektoru)

Dk Decryption key (dešifrovací klíč)

DSA Digital Signature Algorithm (algoritmus digitálního podpisu)

ECC Elliptic Curve Cryptography (kryptografie na eliptických křivkách)

ECDH Elliptic Curve Diffie-Hellman (Diffie-Hellman na eliptických křivkách)

ECDSA Elliptic Curve Digital Signature Algorithm (digitální podpis na eliptických

křivkách)

EU European Union (Evropská unie)

EUF-CMA Existential Unforgeability under Chosen Message Attack (existenciální

nefalšovatelnost proti zvolenému útoku na zprávu)

FIPS Federal Information Processing Standard

(federální standard zpracování informací)

FORPS Forest of Random Subsets (les náhodných podmnožin, použitý v SPHINCS+)

GCM Galois/Counter Mode (Galoisův/čítací mód blokové šifry)

GeMSS Great Multivariate Short Signature (velmi krátký multivariační podpis)

98 UTB ve Zlíně, Fakulta aplikované informatiky

HKDF HMAC-based Key Derivation Function (Funkce pro odvozování klíčů

založená na HMAC)

HQC Hamming Quasi-Cyclic (kvazicyklický kód Hammingova typu)

HTTPS HyperText Transfer Protocol Secure (zabezpečený protokol přenosu

hypertextu)

ICCS Institute of Commercial Cryptography Standards (Institut pro standardy

komerční kryptografie)

IND-CCA2 Indistinguishability under Adaptive Chosen Ciphertext Attack

(nerozlišitelnost při adaptivním útoku s volbou šifrového textu)

IoT Internet of Things (internet věcí)

IP Internet Protocol (internetový protokol)

IPsec Internet Protocol Security (bezpečnost internetového protokolu)

JSON JavaScript Object Notation (formát zápisu objektů v JavaScriptu)

K-PKE Kyber-like Public Key Encryption (Kyberu podobné šifrování s veřejným

klíčem)

KAT Known Answer Test (test se známou odpovědí)

KEM Key Encapsulation Mechanism (mechanismus zapouzdření klíče)

LAC Lattice-based Cryptography (mřížková kryptografie, název algoritmu)

LEDAcrypt Low-Density Generator Matrix Cryptosystem (Kódový postkvantový

algoritmus)

LWE Learning With Errors (učení s chybami)

ML-DSA Module-Lattice-Based Digital Signature Algorithm (modulově-mřížkový

algoritmus digitálního podpisu)

ML-KEM Module-Lattice-based Key Encapsulation Mechanism (modulově mřížkový

mechanismus zapouzdření klíče)

MLWE Module Learning With Errors (modulární učení s chybami)

MPKC Multivariate Public Key Cryptography (multivariační kryptografie s

veřejným klíčem)

UTB ve Zlíně, Fakulta aplikované informatiky 99

NEDO New Energy and Industrial Technology Development Organization

(Japonská agentura pro výzkum a vývoj)

NGCC Next-generation Commercial Cryptographic Algorithms (Komerční

kryptografické algoritmy nové generace)

NGCC-BC NGCC Block Cipher (Blokové šifry v rámci NGCC)

NGCC-CH NGCC Cryptographic Hash (Hashovací funkce v rámci NGCC)

NGCC-PK NGCC Public Key (Asymetrické algoritmy v rámci NGCC)

NIST National Institute of Standards and Technology (Národní institut pro

standardy a technologie, USA)

NP Nondeterministic Polynomial time (nedeterministický polynomiální čas)

NSS Network Security Services (Sada kryptografických knihoven od Mozilly)

NTRU N-th degree Truncated Polynomial Ring Units (kryptosystém založený na

polynomiálních okruzích)

NTT Number Theoretic Transform (číselná teoretická transformace)

NÚKIB Národní úřad pro kybernetickou a informační bezpečnost (Národní úřad pro

kybernetickou a informační bezpečnost)

Pk Public key (veřejný klíč)

PQC Post-Quantum Cryptography (postkvantová kryptografie)

RLWE Ring Learning With Errors (učení s chybami v okruhu)

SA Security Association (bezpečnostní asociace)

SABER Secure And Fast Encryption Routine (rychlá a bezpečná šifrovací procedura)

SHA-2 Secure Hash Algorithm 2 (bezpečný hashovací algoritmus 2. generace)

SHA-3 Secure Hash Algorithm 3 (bezpečný hashovací algoritmus 3. generace)

SHAKE256 Secure Hash Algorithm Keccak Extendable-Output Function 256 (Varianta

SHA-3 s volitelnou délkou výstupu)

SIDH Supersingular Isogeny Diffie-Hellman

(Diffie-Hellman na supersingulárních isogeniích)

100 UTB ve Zlíně, Fakulta aplikované informatiky

SIKE Supersingular Isogeny Key Encapsulation

(zapouzdření klíče na bázi supersingulárních isogenií)

Sk Secret key (soukromý klíč)

SLH-DSA Stateless Hash-based Digital Signature Algorithm (bezdotazový hashový

algoritmus digitálního podpisu)

SPHINCS Stateless Practical Hash-based Incredibly Nice Cryptographic Signature

(bezdotazový praktický hashový kryptografický podpis)

SSH Secure Shell (zabezpečený protokol vzdáleného přístupu)

SVP Shortest Vector Problem (problém nejkratšího vektoru)

TCP Transmission Control Protocol (protokol řízení přenosu)

TLS Transport Layer Security (zabezpečení transportní vrstvy)

VPN Virtual Private Network (virtuální privátní síť)

WOTS+ Winternitz One-Time Signature Plus (Winternitzův jednorázový podpis,

rozšířený)

XMSS eXtended Merkle Signature Scheme (rozšířený Merkleův podpisový schéma)

UTB ve Zlíně, Fakulta aplikované informatiky 101

SEZNAM PŘÍLOH

Příloha P I: Zdrojové kódy aplikace

PŘÍLOHA P I: ZDROJOVÉ KÓDY APLIKACE

README.md

• Obsahuje základní informace o projektu a podrobné instrukce k instalaci a spuštění.

main.py

• Hlavní spouštěcí soubor projektu.

složka client_server

• Implementace klienta a serveru včetně GUI.

Obsahuje:

 client.py a server.py – logika klientské a serverové části.

 složka gui – soubory pro grafické uživatelské rozhraní klienta a serveru.

složka tests

• Testovací skripty pro ověření správnosti implementace.

Obsahuje:

 test_mlkem768.py – testování algoritmu ML-KEM768.

 test_tls_handshake.py – testování správnosti navázání handshake.

 test_x25519.py – testování algoritmu X25519.

složka benchmark

• Výkonnostní testy a generování grafů.

Obsahuje:

 run_benchmark.py – měření rychlosti jednotlivých operací.

 generate_graphs.py – skript pro generování grafu výsledků.

složka tls

• Implementace hybridního TLS-like protokolu a souvisejících algoritmů.

Obsahuje:

mlkem768.py, x25519.py, tls_core.py – základní logika protokolu.

složka mlkem768_files – interní moduly pro ML-KEM768.

	OBSAH
	Úvod 13
	I teoRetická část 14
	1 Postkvantová kryptografie 15
	1.1 Hrozba kvantových počítačů 15
	1.2 Přístupy postkvantové kryptografie 16

	2 STANDARDIZAČNÍ PROCES NIST PQC 23
	2.1 První kolo standardizačního procesu 24
	2.2 Druhé kolo standardizačního procesu 25
	2.3 Třetí kolo standardizačního procesu 27

	3 NIST StandarDY 33
	3.1 FIPS 203 33
	3.2 FIPS 204 39
	3.3 FIPS 205 43
	3.4 Alternativy ke standardům 48

	4 Přechod na postkvantovou kryptografii 51
	4.1 Doporučení NÚKIB 51
	4.2 Doporučení ostatních organizací 52

	5 Hybridní algoritmus X25519MLKEM768 55
	5.1 X25519 – Algoritmus eliptických křivek 55
	5.2 Princip fungování 55
	5.3 Reálné využití 57
	5.4 Alternativní hybridní algoritmy 58

	II praktická část 60
	6 Implementace X25519MLKEM768 61
	6.1 Implementace klasické výměny klíčů – X22519 61
	6.2 Implementace postkvantové výměny klíčů – MLKEM768 64
	6.3 Návrh TLS-like protokolu 70
	6.4 Implementace protokolu 71
	6.5 Uživatelské rozhraní 73
	6.6 Struktura a spuštění projektu 78

	7 Testování implementace 80
	7.1 Testování X25519 80
	7.2 Testování MLKEM768 82
	7.3 Testování protokolu 85
	7.4 Shrnutí testů 88

	Závěr 89
	Seznam použité literatury 91
	Seznam obrázků 95
	Seznam tabulek 96
	Seznam použitých symbolů a zkratek 97
	Seznam příloh 101
	Úvod
	1 Postkvantová kryptografie
	1.1 Hrozba kvantových počítačů
	1.1.1 Shorův algoritmus
	1.1.2 Groverův algoritmus

	1.2 Přístupy postkvantové kryptografie
	1.2.1 Kryptografie založená na mřížkách
	1.2.2 Kryptografie založená na teorii kódování
	1.2.3 Kryptografie založená na hashovacích funkcích
	1.2.4 Prolomené přístupy
	1.2.5 Porovnání jednotlivých přístupů

	2 STANDARDIZAČNÍ PROCES NIST PQC
	2.1 První kolo standardizačního procesu
	2.1.1 Hodnotící kritéria
	2.1.2 Výsledky prvního kola

	2.2 Druhé kolo standardizačního procesu
	2.3 Třetí kolo standardizačního procesu
	2.3.1 Hodnotící kritéria
	2.3.2 Výsledky třetího kola

	3 NIST StandarDY
	3.1 FIPS 203
	3.1.1 Varianty
	3.1.2 KEM Mechanismus
	3.1.3 Tvorba klíčů
	3.1.4 Proces zapouzdření
	3.1.5 Proces odpouzdření
	3.1.6 Implementace a využití

	3.2 FIPS 204
	3.2.1 Varianty
	3.2.2 Tvorba klíčů
	3.2.3 Proces podepisování
	3.2.4 Proces ověřování
	3.2.5 Implementace a využití

	3.3 FIPS 205
	3.3.1 Varianty
	3.3.2 Tvorba klíčů
	3.3.3 Proces podepisování
	3.3.4 Proces ověřování
	3.3.5 Implementace a využití

	3.4 Alternativy ke standardům
	3.4.1 BIKE
	3.4.2 Classic McEliece
	3.4.3 HQC
	3.4.4 SIKE

	4 Přechod na postkvantovou kryptografii
	4.1 Doporučení NÚKIB
	4.2 Doporučení ostatních organizací

	5 Hybridní algoritmus X25519MLKEM768
	5.1 X25519 – Algoritmus eliptických křivek
	5.2 Princip fungování
	5.3 Reálné využití
	5.4 Alternativní hybridní algoritmy
	5.4.1 P-384MLKEM768
	5.4.2 RSA3072-MLKEM768
	5.4.3 P-384BIKEL3
	5.4.4 P-384HQC192

	6 Implementace X25519MLKEM768
	6.1 Implementace klasické výměny klíčů – X22519
	6.1.1 Aritmetické operace
	6.1.2 Pomocné bezpečnostní funkce
	6.1.3 Hlavní X25519 funkce
	6.1.4 Generování klíčového páru
	6.1.5 Výpočet sdíleného tajemství

	6.2 Implementace postkvantové výměny klíčů – MLKEM768
	6.2.1 Kryptografické primitiva
	6.2.2 Implementace pomocných algoritmů
	6.2.3 Implementace NTT a polynomiálního násobení
	6.2.4 Implementace schématu K-PKE
	6.2.5 Implementace interních algoritmů
	6.2.6 Hlavní algoritmy ML-KEM

	6.3 Návrh TLS-like protokolu
	6.4 Implementace protokolu
	6.5 Uživatelské rozhraní
	6.6 Struktura a spuštění projektu

	7 Testování implementace
	7.1 Testování X25519
	7.1.1 Test správnosti
	7.1.2 Výkonnostní testování

	7.2 Testování MLKEM768
	7.2.1 Test správnosti
	7.2.2 Výkonnostní testování

	7.3 Testování protokolu
	7.3.1 Testování správnosti
	7.3.2 Výkonnostní testování

	7.4 Shrnutí testů

	Závěr
	Seznam použité literatury
	Seznam obrázků
	Seznam tabulek
	Seznam použitých symbolů a zkratek
	Seznam příloh
	Příloha P I: Zdrojové kódy aplikace

